The Black Hole Information Paradox Assignment 3

Due Saturday, 20 February 2021

1. Haar measure on pure states

In the lectures, we introduced a Haar measure on pure states. Given a state of the form

$$|\Psi\rangle = \sum_{i=1}^{W} a_i |E_i\rangle,$$

The measure was

$$d\mu_{\Psi} = \frac{1}{V}\delta(\sum_{i} |a_i|^2 - 1)\prod_{i} d^2 a_i.$$

- a) Find V so that the measure is correctly normalized: $\int d\mu_{\Psi} = 1$. Remember that a_i are complex numbers.
- b) Find the value of

$$\int a_i a_j^* a_k a_l^* d\mu_{\Psi}$$

2. Simulating random pure states

Consider a system of n qubits, so that the total number of states is 2^n . Consider the operator

$$O = \frac{1}{n} \sum \sigma_i^z,$$

where σ_i^z is the σ^z matrix acting on qubit *i*. This operator measures the "average" value of the z-spin in the system. For n = 15, write a computer program to sample random pure states in this Hilbert space and plot the probability distribution that you obtain for values of O. Check that its width is proportional to $2^{-\frac{n}{2}}$.

3. Canonical states

In the lectures, we considered a process of picking states from an energy band with uniform probability. Now consider the ensemble of states

$$|\Psi\rangle = \frac{1}{\sqrt{Z(\beta)}} \sum_{i} e^{-\frac{\beta E_i}{2}} e^{i\theta_i} |E_i\rangle,$$

where $Z(\beta)$ is the partition function; θ_i are angles picked with uniform probability from $[0, 2\pi]$ and the sum runs over all energy eigenstates.

Show that the expectation value of an operator in such states is the same as its expectation value in the *canonical ensemble*. Write down an expression for its fluctuations away from the canonical expectation value, as we did for states that mimicked the microcanonical ensemble.

4. CHSH correlators

Consider the following state of two qubits.

$$|\Psi\rangle = a|00\rangle + b|11\rangle,$$

where a, b are real coefficients but $a^2 + b^2 = 1$ so that the state is correctly normalized. Take A_1, A_2 to be a linear combination of σ_z and σ_x acting on the first qubit and take B_1, B_2 to be a linear combination of σ_z and σ_x acting on the second qubit so that all four operators have operator-norm 1. Find the largest possible value of

$$\langle C_{AB} \rangle = \langle \Psi | A_1 (B_1 + B_2) + A_2 (B_1 - B_2) | \Psi \rangle.$$

Check that your answer reduces to the expected limits when a = 1, b = 0 and when $a = b = \frac{1}{\sqrt{2}}$.

[Hint: This is a hard problem if you attempt it using brute force so you may want to consult quant-ph/0611001.]