The Black Hole Information Paradox Assignment 7

Due Saturday, 27 April 2021

1. Adjoints of mirrors and mirrors of adjoints

Consider a typical equilibrium state, $|\Psi\rangle$. Recall that the mirror of an operator A_{i} in the little Hilbert space H_{Ψ} was defined to satisfy

$$
\begin{equation*}
\widetilde{A_{i}} A_{q}|\Psi\rangle=A_{q} e^{-\frac{\beta H}{2}} A_{i}^{\dagger} e^{\frac{\beta H}{2}}|\Psi\rangle . \tag{1}
\end{equation*}
$$

for any simple operator, A_{q}. Recall that typical states are time-independent and also satisfy

$$
\begin{equation*}
\langle\Psi| A_{q}|\Psi\rangle=\operatorname{Tr}\left(e^{-\beta H} A_{q}\right), \tag{2}
\end{equation*}
$$

to a good approximation.
Use these facts to show that the adjoint of a mirror is the same as the mirror of the adjoint. In other words show that

$$
\begin{equation*}
\langle\Psi| A_{i}\left(\widetilde{A}_{j}^{\dagger}\right) A_{q}|\Psi\rangle=\langle\Psi| A_{i}\left(\widetilde{A_{j}^{\dagger}}\right) A_{q}|\Psi\rangle, \tag{3}
\end{equation*}
$$

where A_{i}, A_{j}, A_{q} are all simple operators.
2. Commutants using antilinear maps

On the little Hilbert space, define

$$
\begin{equation*}
S A_{i}|\Psi\rangle=A_{i}^{\dagger}|\Psi\rangle \tag{4}
\end{equation*}
$$

Note that S is an antilinear operator, whose action on the little Hilbert space is completely specified by the equation above. Show that

$$
\begin{equation*}
\left[S A_{i} S, A_{j}\right] A_{q}|\Psi\rangle=0 \tag{5}
\end{equation*}
$$

for any simple operators A_{i}, A_{j}, A_{q}.

3. The Modular operator

For an antilinear map, the Hermitian conjugate is defined via

$$
\begin{equation*}
\left(|A\rangle, S^{\dagger}|B\rangle\right)=(|B\rangle, S|A\rangle) \tag{6}
\end{equation*}
$$

where $($,$) is the inner-product between vectors. Note the additional complex conju-$ gation that appears above compared to the definition of the Hermitian conjugate for linear maps. Using this, show that for a typical equilibrium state, the modular operator defined via

$$
\begin{equation*}
\Delta=S^{\dagger} S \tag{7}
\end{equation*}
$$

is well approximated by

$$
\begin{equation*}
\Delta=e^{-\beta H} \tag{8}
\end{equation*}
$$

Hint: Use a basis of simple operators that comprises polynomials in the creation and annihilation operators.

4. Tomita-Takesaki definition of Mirrors

Show that the operator J defined via

$$
\begin{equation*}
S=J \Delta^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
J \Delta^{\frac{1}{2}}=\Delta^{-\frac{1}{2}} J \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{2}=1 \tag{11}
\end{equation*}
$$

Check that the definition of the mirror operators in an equilibrium state is equivalent to

$$
\begin{equation*}
\widetilde{A}=J A J \tag{12}
\end{equation*}
$$

5. Mirror operators in a spin chain

Consider a "spin chain" with $N=5$ sites, where each site hosts a two-state system. At each site we have the three Pauli spin operators σ_{a}^{i} where $i=1 \ldots N$ and $a=x, y, z$. We define "simple" operators as polynomials of order at most 1 in these elementary spin operators. This space has dimension $3 N+1$. More explicitly, a basis of simple operators is given by the identity operator and the set of single Pauli operators at each site.
Write a small computer script to generate a random state, $|\Psi\rangle$, in the 2^{N} dimensional Hilbert space. Generate the little Hilbert space about $|\Psi\rangle$ and find the mirror operators $\widetilde{\sigma}_{a}^{i}$. Check that although

$$
\begin{equation*}
\left[\widetilde{\sigma}_{a}^{i}, \sigma_{b}^{j}\right] \neq 0 \tag{13}
\end{equation*}
$$

as an operator, we still have

$$
\begin{equation*}
\left[\widetilde{\sigma}_{a}^{i}, \sigma_{b}^{j}\right]|\Psi\rangle=0 \tag{14}
\end{equation*}
$$

