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Lecture 8: some Quantum Information Results

These arguments led Mathur to propose a

more formidable paradox suggesting that such
" small corrections " cannot resolve the information

paradox .

Later ,
AMPS elaborated this paradox slightly

The main point of the argument was as

follows

1) A smooth horizon requires mode requires

entanglement between mode's outside and
inside the horizon

2) Typicality requires entanglement between modes
outside and modes far away .



31 Entanglement is monogamous . So
,
this is a paradox .

The important difference is that this does

not involve only the exterior but also

makes referee to the Ftw operators.

We will take a detour into quantum information
to review this paradox

i) we will quantify entanglement in terms of

Bell correlations [ explain adv . over E.E .]

→ explore average entanglement



CASH correlations Tsirelson's hound .

The key aspect of entanglement is that

quantum mechanically some correlations can exceed

possible classical correlations .

so entangled systems can violate Bell's

inequalities .

It is more convenient to frame this in terms

of CASH correlates
.



say we have two systems - A and B

Ai
, Az Bi

,
Bz

A B

In each system we have two observables
Ai e Az in A

and

Bi
,
Bz in B

.

Imp restriction .

Each observable takes values in f-I , 13



For instance A and B could be two coins

upon opening the box and observing we

can assign

A ,
= {
1 if heads Az = { I ,

if Rss coin

- I if tails .

- I
,
if Rs to coin .

and similarly for B
, and Bz

Now define the joint observable

CAB = A
,
CB,tBz) t Az CB , - Bz)



First consider the classical case .

Classical means we can assign values
simultaneously to all observables

Then it is easy to check that

ICABI f 2 .

because

I CAB) f 113+1321 t IB,- Bst

( since IA ,) , 1h21 ft)

f 2 Max C 1B ,I
,
I Bal)

12 . [Give numerical example]



Tsirelson showed that
, quantum -mechanically,

ICABI E 2K

Sf

z f ( CAB If 2B

we can say the systems are entangled -
Here is one

way to visualize how this can

happen .

Say we have a
state 147 .



11327
IA
,>

1B
,>

-

IAz>

Let

(A) = A , Itis IAS = As It>
,
1B ,
> = B

,
It>

1C ,> = C
, It>

Note
113,7 t IBz7 = Tz IA ,)

113,7 - 1132> = Fs lAz)

but LAILA'D = <BilBi> = 1 .



For this to happen it is crucial that

[B , ,Bz3 do } we
cannot assign definite

[A , ,
Az) * o

Values to Al
,
Az simultaneously

But
, of course

[Ai
, Bg-3=0

T

( Def" of distinct systems)

in fact
, say AT = AE= BE BI -- I then

2

CAB = AT CB ,tBzFtAzCB ,
-Batt A

,
Az (B.tBz)CB

,
-Bz)

t AZA , CB,-Bz)CBatBz) = 4 - [As ,Az3IB , ,B]



Monogamy of entanglement

Now
say we have a third system ,

C
.

which has its own observables G
, Ca

By C being a distinct system we again
mean

@i. Aj3= fi , Bj3=0

then we can define

Cac = A
, Cata) +Azcc ,

-G)

which can be used to measure entanglement
between A and C

.



Then we have a remarkable inequality

⇐ABT t Lcac'T s 8
.

Eases :

XABI 72 ⇒ Icac) S2

ICAC I 72 ⇒ l Capt s 2

CAB = zf2 ⇒ CAC = O

T T
Max ent ⇒ go

ent between

between ARB A- & C .
!

This quantifies the monogamy
of entanglement !



we now turn to the average entanglement
between subsystems

The question we want to ask is the following.
Say we have a big system ,

made up of
two parts

one part with a H- space of dim es
"

another part with H -space of dimes

we will assume for simplicity that

es
'

← es



For large systems , this is not a strong assumption
eg . say one system has

to
"

qubits
-the other has

(t - lo
-

6) xio
"

qubits
10

es = z

"

(O

es
'

= Eo"×z"

so

es
'

- c es



we want to ask about the entanglement between
the two

a) Given operators satisfying some simple properties
in the smaller subsystem ,

we can find ops in
the larger subsystem satisfying tire't son's bound .

b) Entanglement entropy between - the two subsystems

Lets start by examining the density matrix .

Consider a
"

typical
"

state in the larger system
s
'

s

e e

It > = EE Amn Im ,n7 .

MII n
= ,

the smaller density matrix is

Pmm .
= EE,amna*mn



The larger density matrix is
Sl

e

Pnm, = £= , Amn a*mn'

But the eigenvalues of the larger density
matrix are the same as the eigenvalues
of the smaller one .

This is because we can always use singular
value decomposition for the Matrix amn

[perform a change of basis in both
the smaller and larger system] to
write the state as

s
'

e

it > = { TB 1427 .

=3

so the larger density matrix has rank at
Most es

'



the
' '

expectation value
"

of Pimm, is

S { Samnoimn dmx = Estes, 8mm' Sm'

=L
,

es

But notice that

2

S = ICE Mmm, - est, 8mm) ) gives the rage
es

'
mon'

average dedication of each eigenvalue .



Now 2

( E / Pimm. -¥ Smm, I >
Mcm'

=/ E Pm mi Pm, m - 2- § pmm t. I ) .

Min
' est es

'

* *

L E a.mn am'm amiq omg>
- t

nqmm' e.
s
'

Reca"
< a. g.

*

quite> = wtf ,,
[ Sj size t sie Sir]

so we get above .

ests
'

@
¥1

,,
§ rn Sgg 8mm' t Smm 8mm, Sng) - E

es
'



ests
'

@
¥1

,,
§ rn Sgg 8mm' t Smm 8mm, Sng) - L

es
'

= ⇐s
'

- +

@
Sts't z es

'

Recall the additional normalization in S

S = L
est es

'

es
. fests -

Is']
At large S

,
s
'

s =L

•
Sts

'



TS gives us the average deviation of

the eigenvalues of p from e-
s
'

. For es >yes
'

we see that this deviation is much

smaller than the size of the eigenvalue .

on this sense
, the density matrix is close

to the identity matrix .

Note that this argument does not work for the
larger system .

There the deviations are larger
than the size of eigenvalues .

To be expected since the larger density matrix
can have rank at most es!



Now say that we have two '' pseudospin
"

operators e.
Ai

,
Az

,
on the first system

This means we have operators that share
the following properties of g and G

AT =A5= z

(A ,tAzf= CA
,
- Azf= 2

One can always find such operators by considering
a zd subsector of the Hilbert space .

We can find such operators in a SHO also

as we will see .



Now
, as mentioned above

,
we can choose a

Schmidt basis so that the state

looks like
si
e

It> = L E Im
,
in > .

e
s
'

12 m=I

T
This uses our result

Let the matrix elements of A , e Az be

A-
,
Im> = { (Aslmqlg) I Azlm> = { (Azlmglq > .

Now define
9

TA
, Itn > = § #Iginla> i Fain> =qECAdqmlqT

since these are just the transpose of

the A , , Az matrices
,
we also have

HA
,
11 = HAH = I



But also a

E
,
It> =

esta IES E .
Im

,
in >

= esta ELA ,Igm Im , of >
Msg

rename m ⇐ q

FA
,
It > =

¥ §
, g

CA ,)mq I 9 im ) -

= A
, It )

similarly

Iha l t > = As 147



Set

B
, =fz CE

,
tf) i Ba = CAT -AT)

clearly B,2= BE =L
Now define

CAB -_ A
,
( B.+ Bz) t AZCB . - Ba)

.
Clearly

< tlcn.rs/t7--rz&tlAflt7tctrlAzltr)
= 252 .



Next
,

consider the entanglement entropy
For the identity density matrix

,
we clearly

have

- Er Cpdnp) = s
'

em general , we can write

- tr (perp) = mines
'

,
s)

as long as

I s' - s) 771
.



We can plot this as a ratio of

the fraction of the size of one

system to the entire system

Subsystem

× =L

x = I
Sts

'


