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Abstract

We study supersymmetric partition functions in several versions of the AdS/CFT

correspondence.

We present an Index for superconformal field theories in d = 3, 4, 5, 6. This

captures all information about the spectrum that is protected, under continuous de-

formations of the theory, purely by group theory. We compute our Index in N = 4

SYM at weak coupling using gauge theory and at strong coupling using supergravity

and find perfect agreement at large N . We also compute this Index for supergravity

on AdS4 × S7 and AdS7 × S4 and for the recently constructed Chern Simons matter

theories.

We count 1/16 BPS states in the free gauge theory and find qualitative agreement

with the entropy of big black holes in AdS5. We note that the near horizon geometry

of some small supersymmetric black holes is an extremal BTZ black holes fibered on

a compact base and propose a possible explanation for this, based on giant gravitons.

We also find the partition function of the chiral ring of the N = 4 SYM theory at

finite coupling and finite N .

Turning to AdS3, we study the low energy 1/4 and 1/2 BPS partition functions

by finding all classical supersymmetric probe brane solutions of string theory on this

iii
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background. If the background BNS field and theta angle vanish, AdS3×S3×T 4/K3

supports supersymmetric probes: D1 branes, D5 branes and bound states of D5 and

D1 branes. In global AdS, upon quantization, these solutions give rise to states in

discrete representations of the SL(2,R) WZW model on AdS3.

We conclude that (a) the 1/4 BPS partition function jumps if we turn on a theta

angle or NS-NS field (b) generic 1/2 BPS states are protected. We successfully com-

pare our 1/2 BPS partition function with that of the symmetric product. We also

discuss puzzles, and their possible resolutions, in reproducing the elliptic genus of the

symmetric product.

Finally, we comment on the spectrum of particles in the theory of gravity dual to

non-supersymmetric Yang Mills theory on S3× time.
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Chapter 1

Introduction

1.1 Background

Physical theories are judged by both internal and external consistency. We look

for theories that are logically consistent and describe the world accurately. Both

these principles were important in the 20th century. For example, historically, Dirac

was led to the celebrated ‘Dirac equation’ because he was troubled by the negative

probabilities that appear in the Klein Gordon equation. On the other hand what

is today called the standard model of particle physics was chosen over other logical

alternatives because it seemed to provide a more accurate description of the world.

In this context, the study of quantum gravity marks a peculiar epoch in theoretical

physics. The standard model – which is based on the framework of quantum field

theory – and classical general relativity are consistent with all experiments that have

been performed to date. However, it has so far proven to be impossible to incorporate

gravity in the framework of traditional quantum field theory. The story of quantum

1
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gravity is entirely about this attempt: theoretical physicists are looking for any theory

that reduces to general relativity in the classical limit and is consistent with the

principles of quantum mechanics!

There are two factors that prevent the union of gravity and quantum mechanics.

First, when gravity is weak and approximately linear, classical General Relativity

predicts the existence of ‘gravity waves’. Just like light waves are described by pho-

tons we expect, that in quantum mechanics, gravity waves should be described by

‘gravitons’. However, the interactions of these gravitons with themselves or with

other particles are necessarily ‘non-renormalizable’. Non-renormalizable theories are

sometimes used as ‘effective theories’; however, beyond some energy scale, they need

to be supplemented with additional structure (this is called ‘UV-completing’ the the-

ory). UV-completions are seldom unique. To the contrary most non-renormalizable

theories, such as the Fermi theory of weak interactions, allow an infinite choice of

UV-completions. Gravity is strikingly different; so far no one has found even one UV

completion of gravity within the framework of quantum field theory.

Second, in the opposite regime from gravity waves, when gravity is highly non-

linear, we find that general relativity predicts the existence of black holes. Black holes

have an event horizon; something that crosses this horizon never returns. However, in

the seventies, it was found, by applying the principles of quantum field theory to black

holes, that they must emit radiation. This radiation is exactly thermal and causes the

black hole to evaporate slowly. When the black hole has evaporated completely we

end up with thermal radiation but no trace of what constituted the black hole in the

first place. This loss of information is in contradiction with the unitarity of quantum
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evolution. Once again, we find that trying to put quantum mechanics together with

gravity leads to a paradox.

So we would like a theory of quantum gravity that describes quantum interactions

between gravitons and explains how unitarity is preserved in Hawking radiation. If

possible we would also like this theory to provide a ‘microscopic’ understanding of

black hole thermodynamics. At the outset one may imagine that it is easy to conjure

models that meet these requirements. However, this task has proven remarkably

difficult. The great virtue of string theory is that it meets specifications that are very

close to those listed above.

The best example of how string theory answers fundamental questions about grav-

ity comes from the AdS/CFT correspondence. This remarkable conjecture goes as

follows. We consider a special kind of gauge theory – N = 4, SU(N) Yang Mills the-

ory. This is an ordinary gauge theory, albeit one with a lot of symmetry. According

to the AdS/CFT conjecture, at strong coupling, this theory is identical to a theory

of gravity coupled to some special matter, living in Anti-de Sitter space! We know

how to quantize the gauge theory. Hence, if the AdS/CFT conjecture is correct it

provides us with a theory of quantum gravity.

This theory of quantum gravity is a close cousin of ordinary four dimensional

gravity. For example, at low energies, this theory has excitations that are gravitons

and we will study these excitations in the second chapter of this thesis. This theory

also has black holes and we will study these in the third chapter. At energies between

those of gravitons and black holes, this theory has some special kinds of stringy states

and we will study these in the fourth and fifth chapters of this thesis.
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In the description above, we used a gauge theory to describe a specific theory

of quantum gravity. Logically, this is entirely consistent. However, we also have an

independent definition of this theory of quantum gravity via string theory. So, at

times we can use the string theory to perform calculations that are difficult in the

gauge theory. We will use both these perspectives in this thesis.

This sets the backdrop for this work. We will now describe the motivation for the

problems that we solve in some more detail and using a more technical tone.

1.2 Motivation

As we explained above, the AdS/CFT conjecture links gravity on Anti-de sitter

space with a conformal field theory. There are several versions of this correspondence.

In the best studied example, the theory of gravity is Type IIB string theory on

AdS5 × S5 and the conformal field theory is N = 4, SU(N) Yang Mills theory living

on the boundary of AdS5. The coupling constant of the conformal field theory is

related to the string coupling constant in gravity: g2
YM ∼ gs. The radius of Anti-de

Sitter space, in string units, is related to the ‘t Hooft coupling:
(
R
ls

)4

∼ λ = g2
YMN .

A precise way to state the AdS/CFT conjecture is in terms of the partition functions

for each theory: Z = treβH , where H is the Hamiltonian. The AdS/CFT conjecture

then tells us

Zgauge theory(β, g2
YM, N) = Zstring theory(β, gs = g2

YM ,
R

ls
=
(
g2

YMN
) 1

4 ) (1.1)

However equation (1.1) is very hard to verify. We see, from the formulae above,

that when Yang Mills perturbation theory is valid and the ‘t Hooft coupling is small,
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the radius of AdS space is small in string units. This means that stringy corrections

are important in gravity. On the other hand, when the radius of AdS space is large,

the Yang Mills coupling is large and we cannot use perturbation theory. Thus we see

that while we have a very interesting conjectured duality, we also have a conundrum:

the string theory is easy to analyze when the gauge theory is not and vice-versa.

This thesis concerns itself with a simplified version of (1.1). We will consider,

on each side of the duality, not the full partition functions but the supersymmetric

partition functions. A supersymmetric partition function is defined as a trace over

supersymmetric states only: Zsusy = trsusye
βH . We can now consider a simplified

version of (1.1). Namely

Zsusy, gauge theory(β, g2
YM, N) = Zsusy, string theory(β, gs = g2

YM ,
R

ls
=
(
g2

YMN
) 1

4 ). (1.2)

Remarkably (1.2) turns out to be tractable and in several cases we will be able to

calculate both sides of the equation above and demonstrate that they are equal.

We now turn to a summary of the results that we have obtained.

1.3 Summary of Results

Supersymmetric partition functions are often protected under deformations of a

theory. Often we need to study the dynamics of the theory to argue this. However,

sometimes group theory alone is enough to guarantee that some quantities cannot

change under a class of deformations; in this thesis, we will use the word ‘Index’ to

refer to such quantities.

In chapter 2, we describe how to construct such indices in four dimensional su-
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perconformal field theories. The idea behind this construction is as follows. Some

representations of the superconformal algebra are short i.e. they have fewer states

than generic representations. The energy of the highest weight in this representation

is determined in terms of its other charges; this is called a BPS relation. Under contin-

uous deformations of a theory, these charges cannot change since they are integrally

quantized. One might be tempted to think that the energy also cannot change and

that all quantum numbers of this representation are protected under deformations;

this is not quite correct.

The is because two or more short representations can combine to form long repre-

sentations. Group theory cannot predict when such a combination occurs. However,

it does tell us that such a combination can only occur between a bosonic and a

fermionic representation. Thus, the difference

number of bosonic short reps− number of fermionic short reps,

is protected! The quantity above is the simplest example of an Index and was first

studied by Witten. The indices that we define in Chapter 2, are generalizations of

this construction. We proceed to apply our construction to the AdS5/CFT4 corre-

spondence. We calculate the superconformal Index in the free gauge theory and also

using supergravity and find perfect agreement.

However, it is evident that this Index does not capture all information about super-

symmetric states in the theory. For example, the theory of gravity has supersymmetric

black holes and these do not contribute to the Index at all (the contribution from

bosonic and fermionic states that constitute the black hole cancels out). In chapter 3,

we turn to more general supersymmetric partition functions in AdS5/CFT4. We cal-
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culate the partition function over states that preserve 1
16

of the supersymmetry of the

theory at free coupling. The entropy of such states shares qualitative features with

the entropy of supersymmetric black holes. We conjecture that if one could count the

number of 1
16

supersymmetric states in the gauge theory at any finite coupling, this

would reproduce the exact entropy of supersymmetric black holes.

Turning to states that preserve more supersymmetry, we calculate the partition

function over 1
8

BPS states at finite coupling and finite N . This partition function

changes discontinuously if we turn on even a small finite coupling. However, we

conjecture that it is protected under any further changes in the coupling. Non-trivial

evidence for this conjecture has accumulated over the past few years and we will

discuss this further in Chapter 3.

In Chaper 4, we extend the construction of our Index to superconformal field

theory in 3,5 and 6 dimensions. We then calculate this Index in supergravity on

AdS4×S7 and AdS7×S4. It is believed, that these supergravities are obtained as the

large N , low energy limit of the theory of coincident M2 and M5 branes respectively.

Although this is an area of active research, at this time, these latter theories are

not understood independently. Any proposal for the worldvolume theories on M2 or

M5 branes must reproduce, at large N , the indices we calculate in Chapter 4. In

this chapter, we also apply our indices to Chern Simons matter theories. For such

theories, we have the opposite problem. It is the gravity dual to these gauge theories

that is not understood. Once again, any proposal for a gravity dual must reproduce

the Index that we calculate.

In Chapters 6 and 5, we shift gears and turn to a study of the AdS3/CFT2 cor-
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respondence. The Index in AdS3 is quite famous and is called the ‘elliptic genus’.

This is the quantity that was first used to successfully count the entropy of black

holes in string theory. Furthermore, almost every succesful analytic entropy counting

programme, to date, may be phrased in terms of the AdS3/CFT2 correspondence.

However, the CFT involved in this correspondence is quite complicated. To be

specific let us consider the duality between string theory on AdS3 × S3 × T 4 and a 2

dimensional conformal field theory. The CFT in questions is the 1 + 1 dimensional

sigma model on the moduli space of instantons in N = 4 YM theory on T 4. This

theory is not understood very well. However, it is believed that by tuning parameters

in this theory, we can deform it to the sigma model on the symmetric product orbifold

(T 4)N/SN , where N is a parameter that controls the AdS radius. All calculations in

the CFT are performed at this point in parameter space.

Several papers have tried to match supersymmetric partition functions calculated

at this point in parameter space with the answers from supergravity. However, these

papers have neglected the fact that supergravity itself ceases to be valid and string

corrections are important after a certain energy.

In Chapter 4 we show that, for generic parameters in the CFT, this is justified

and these string corrections are not important. However, at some singular points

in parameter space, these string corrections can contribute to the supersymmetric

partition function. To quantify this contribution, we use a technique that has been

used frequently in the past few years. We start by enumerating all low energy su-

persymmetric classical solutions to string theory. This enumeration is performed in

Chapter 5. In 6, we quantize these solutions, using techniques of geometric quanti-
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zation, to obtain their contribution to the supersymmetric partition function. Our

analysis leads to a prediction for new kinds of supersymmetric black hole solutions.

We are also left with the issue of understanding how the ‘elliptic genus’ jumps as

we move off this singular point in moduli space. This is an important puzzle and may

be useful in teaching us about strings in RR backgrounds. It may be the case, that

the methodology we have used is not consistent and that would be interesting also.

To summarize then, we study supersymmetric partition functions in the AdS/CFT

correspondence in diverse dimensions. We are often able to successfully match com-

putations on both sides of parameter space but we are also left with puzzles for future

work.

In the appendix, we include a brief note on moving away from supersymmetry. It

is believed that large N,SU(N) gauge theory should also have a string dual. In the

appendix, we decompose the partition function of large N , SU(N) gauge theory on

a sphere to determine the spectrum of particles in the dual string theory. This is a

check that the putative dual will have to satisfy.



Chapter 2

An Index for 4 Dimensional

Superconformal Field Theories

2.1 Introduction

The best studied version of the AdS/CFT correspondence is between string theory

on AdS5 and a conformal field theory in 4 dimensions. This classic version of the

correspondence was obtained by studying the infra-red limit of the theory on N

coincident D3 branes in flat space. An analysis of this system led to the conjecture

that N = 4, U(N) Super Yang Mills theory is dual to type IIB string theory on

AdS5 × S5 [1].

The N = 4 SYM theory, in the large N limit, has a coupling constant λ, which is

exactly marginal. This corresponds to the radius of AdS space, in string units, with

λ ∼
(
R
α′

)4
. We see now, that when supergravity is valid i.e when R

α′
>> 1, the gauge

theory is strongly coupled and when Yang Mills perturbation theory is valid, string

10
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corrections are important in gravity.

Other versions of the AdS/CFT conjecture may be obtained by placing the D3

branes at orbifold singularities or at the tip of a conifold. In each of these cases, one

obtains a situation as above, where Yang Mills perturbation theory can be trusted in

one regime and gravity in another regime.

So, in order to check the AdS/CFT conjecture it is important to understand what

quantities remain unchanged as one dials the coupling from weak to strong. These

quantities can be computed both in gravity and in the perturbative gauge theory; if

they match, this provides an important check of the AdS/CFT conjecture.

Such protected quantities, if they exist, generically fall into two classes. First, we

have quantities that are protected by group theory alone. These quantities are called

Indices. They do not change under any deformation of the spectrum that preserves

the symmetries of the theory. For example, in N = 4 Yang Mills theory, the Index

is invariant not only under changes of the coupling constant, but under much more

general deformations of the theory that preserve the the conformal symmetry and a

particular supersymmetry.

Second, there are those quantities that are not ‘Indices’ in the sense above but

are still invariant under changes of the coupling constant. We will discuss such su-

persymmetric partition functions in the next chapter.

Let us now discuss the principle behind the definition of an Index, in some more

detail. Supersymmetry algebras that contain R-charges in the right hand side have

special BPS multiplets. These multiplets occur at special values of energies or con-

formal dimensions determined by their charge, and have fewer states than the generic
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representation. An infinitesimal change in the energy of a special multiplet turns it

into a generic multiplet with a discontinuously larger number of states. One might be

tempted to use this observation to conclude that the number of short representations

cannot change under variation of any continuous parameter of the field theory. How-

ever there is a caveat. It is sometimes possible for two or more BPS representations

to combine into a generic representation. Such a combination, when it happens is

always between a ‘bosonic’ BPS multiplet and a ‘fermionic’ BPS multiplet. So, the

simplest Index one can define is the difference between the number of bosonic BPS

multiplets and fermionic BPS multiplets.

If there is more symmetry in the problem, we can give more structure to our

Indices. The Indices we will define below take the form

IW = Tr[(−1)F eµiqi ], (2.1)

and are defined for 4 dimensional superconformal field theories (with arbitrary number

of supersymmetries) on S3× time. The superscript ‘W’, is because these Indices

closely resemble the Witten Index [2].

The Indices IW are a functions of 2, 3 and 4 continuous variables for N = 1, 2, 4

superconformal field theories respectively. We will explicitly computer this Index in

the case of the N = 4 Yang Mills theory in the free limit. We can also compute

this Index in supergravity and on doing this computation, we find perfect agreement.

This agreement provides a check on the AdS/CFT correspondence.

Now, it is known that AdS5 × S5 supports supersymmetric black holes. Can our

Index account for their entropy? Unfortunately, in the large N limit, the Index does

not undergo the deconfinement phase transition described in [3, 4]. In fact, as we
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mentioned above, the Index may be completely accounted for by ‘supergravitons’.

This indicates that the black holes completely cancel out in their contribution to the

Index. We discuss this issue further in the next chapter.

The structure of this chapter is as follows. We start by discussing the supercon-

formal algebra and its unitary representations. We show how superconformal Indices

may be defined, given any such unitary representation. We then present a trace for-

mula that may be used to evaluate all these Indices in a Lagrangian field theory.

Finally, we compute this Index in N = 4 SYM theory in the free limit and at strong

coupling (using gravity) and find perfect agreement.

2.2 Unitary Representations of 4 dimensional Su-

perconformal Algebras

In this section we study the structure of representations of conformal and super-

conformal algebras. Our goal is to understand which representations, or combinations

of representations, are protected. This will allow us to show that all protected infor-

mation that can be obtained by using group theory alone is captured by the Index

we will define.

2.2.1 The 4 dimensional Conformal Algebra

The set of Killing vectors Mµν = −i(xµ∂ν − xν∂µ), Pµ = −i∂µ, Kµ = i(2xµx.∂ −

x2∂µ) and H = x.∂ form a basis for infinitesimal conformal diffeomorphisms of R4.
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These Killing vectors generate the algebra

[H,Pµ] = Pµ,

[H,Kµ] = −Kµ,

[Kµ, Pν ] = 2(δµνH − iMµν),

[Mµν , Pρ] = i(δµρPν − δνρPµ),

[Mµν , Kρ] = i(δµρKν − δνρKµ),

[Mµν ,Mρσ] = i (δµρMνσ + δνσMµρ − δµσMνρ − δνρMµσ) .

(2.2)

Consider a 4 dimensional Euclidean quantum field theory. It is sometimes possible

to combine the conformal Killing symmetries of the previous paragraph with suitable

action on fields to generate a symmetry of the theory. In such cases the theory in

question is called a conformal field theory (CFT). The Euclidean path integral of a

CFT may be given a useful Hilbert space interpretation via a radial quantization.

Wave functions (kets) are identified with the path integral, with appropriate operator

insertions, over the unit 3 ball surrounding the origin. Dual wave functions (bras)

are obtained by acting on kets with by the conformal symmetry corresponding to

inversions xµ = xµ

x2
1. Under an inversion, the Killing vectors of the previous paragraph

transform as Mµν → Mµν , H → −H, Pµ → Kµ. As a consequence, the operators

Mµν , Pµ, Kν are represented on the CFT Hilbert space (2.2) with the hermiticity

conditions

Mµν = M †
µν , Pµ = K†µ. (2.3)

Radial quantization of the CFT on R4 is equivalent to studying the field theory on

1As a consequence, a bra may be thought of as being generated by a path integral, performed
with appropriate insertions, on R4 minus the unit 3 ball. The scalar product between a bra and a
ket is the path integral - with insertions both inside and outside the unit sphere - over all of space.
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S3× time. The operators Mµν generate the SO(4) rotational symmetries of S3, and

H is the Hamiltonian. From this point of view the conjugate generators Pµ and Kµ

are less familiar; they act as ladder operators, respectively raising and lowering energy

by a single unit.

The Hilbert space of a CFT on S3× time may be decomposed into a sum of

irreducible unitary representations of the conformal group. The theory of these rep-

resentations was studied in detail by [5]. We present a brief review below, as a warm

up for the superconformal algebra (see [6] and references therein for a recent discus-

sion).

2.2.2 Unitary Representations of the Conformal Group

Any irreducible representation of the conformal group can be written as some

direct sum of representations, Ri
compact, of the compact subgroup SO(4)× SO(2):

RSO(4,2) =
∑
i

⊕
Ri
compact. (2.4)

The states within a given SO(4)×SO(2) representation all have the same energy. As

the energy spectrum of any sensible quantum field theory is bounded from below, the

representations of interest to us all possess a particular set of states with minimum

energy. We will call these states (which we will take to transform as Rλ
compact) the

lowest weight states. The Kµ operators necessarily annihilate all the states in Rλ
compact

because the Kµ have negative energy. We can now act on these lowest weight states

with an arbitrary number of Pµ (‘raising’) operators to generate the remaining states

in the representation. We will use the charges of the lowest weight state |λ〉 ≡

|E, j1, j2〉 to label this representation. We use the fact that SO(4) = SU(2)×SU(2);
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j1 and j2 are standard representation labels of these SU(2)s.

It is important that not all values of E, j1, j2 yield unitary representations of the

conformal group. For a representation to be unitary, it is necessary for all states

to have positive norm. Acting on the lowest energy states with Pµ, we obtain (via a

Clebsh Gordan decomposition) states that transform in the representations (E+1, j1±

1/2, j2 ± 1/2). The norm of these states may be calculated using the commutation

relations (2.2) [7] . The states with lowest norm turn out to have quantum numbers

(E + 1, j1 − 1
2
, j2 − 1

2
), and this norm is given by

‖ ‖2

2
= E − j1 − 1 + δj10 − j2 − 1 + δj20. (2.5)

Unitarity then requires that

(i) E ≥ j1 + j2 + 2 j1 6= 0 j2 6= 0,

(ii) E ≥ j1 + j2 + 1 j1j2 = 0.

(2.6)

The special case j1 = j2 = 0 has an additional complication. In this case the norm

of the level 2 state P 2|ψ〉 is proportional [7] to E(E − 1) and so is negative for

0 < E < 1. The representation with E = 0 is annihilated by all momentum operators

and represents the vacuum state. The representation at E = 1 is short and it obeys

the equation P 2|E〉 = 0 so it is a free field in the conformal field theory.

Unitary representations exist even when this bound is strictly saturated. The zero

norm states, and all their descendants, are simply set to zero in these representations

2 making them shorter than generic.

2The consistency of this procedure relies on the fact that, at the unitarity bound, zero norm
states are orthogonal to all states in the representation. As a consequence the inner product on the
representation modded out by zero norm states is well defined and positive definite.
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Now consider a one parameter (fixed line) of conformal field theories. An in-

finitesimal variation of the parameter that labels the theory will, generically, result in

an infinitesimal variation in the energy of all the long representations of the theory.

However a short representation can change its energy only if it turns into a long repre-

sentation. In order for this to happen without a discontinuous jump in the spectrum

of the CFT (i.e. a phase transition), it must pair up with some other representation,

to make up the states of a long representation with energy at just above the unitar-

ity threshold. Groups of short representations that can pair up in this manner are

not protected; the numbers of such representations can jump discontinuously under

infinitesimal variations of a theory.

However consider an Index I that is defined as a sum of the form

I = α[i]n[i] (2.7)

where i runs over the various short representations of the theory, n[i]s are the number

of representations of the ith variety, and α[i] are fixed numbers chosen so that I

evaluates to zero on any collection of short representations that can pair up into

long representations. By definition such an Index is unaffected by groups of short

representations pairing up and leaving, as it evaluates to zero anyway on any set of

representations that can. It follows that an Index cannot change under continuous

deformations of the theory.

We will now argue that the conformal algebra does not admit any non trivial In-

dices. In order to do this we first list how a long representation decomposes into a sum

of other representations (at least one of which is short) when its energy is decreased so

that it hits the unitarity bound. Let us denote the representations as follows. AE,j1,j2
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denotes the generic long representation, Cj1,j2 denotes the short representations with

j1 and j2 both not equal to zero, BL
j1

denotes the short representations with j2 = 0,

BR
j2

the short ones with j1 = 0. Finally we denote the special short representation at

E = 1 and j1 = j2 = 0 by B. As the energy is decreased to approach the unitarity

bound we find

lim
ε→0

χ[Aj1+j2+2+ε,j1,j2 ] = χ[Cj1,j2 ] + χ[Aj1+j2+3,j1− 1
2
,j2− 1

2
]

lim
ε→0

χ[Aj1+1+ε,j1,0] = χ[BL
j1

] + χ[Cj1− 1
2
, 1
2
]

lim
ε→0

χ[Aj2+1+ε,0,j2 ] = χ[BR
j2

] + χ[C 1
2
,j2− 1

2
]

lim
ε→0

χ[A1+ε,0,0] = χ[B] + χ[A3,0,0].

(2.8)

In (2.8) and throughout this paper, the symbol χ denotes the super-character on a

representation3.

It follows from (2.8) that
∑

i αini is an Index only if

αCj1,j2 = 0, αBLj1
+ αC

j1−
1
2 ,

1
2

= 0, αBRj2
+ αC 1

2 ,j2−
1
2

= 0, αB = 0. (2.9)

The only solution to these equations has all α to zero; consequently the conformal

algebra admits no nontrivial Indices. The superconformal algebra will turn out to be

more interesting in this respect.

3i.e. TrR(−1)FG where R is an arbitrary representation, G is an arbitrary group element, and
F is the Fermion number, which plays no role in the representation theory of the conformal group,
but will be important when we turn superconformal groups below.
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2.2.3 Unitary Representations of d = 4 Superconformal Al-

gebras

In the next two subsections we review the unitary representations of the d = 4

superconformal algebras [8] that were studied in [9, 10, 11, 7, 12, 13]. A supersym-

metric field theory that is also conformally invariant, actually enjoys superconformal

symmetry, a symmetry algebra that is larger than the union of conformal and super

symmetry algebras. The bosonic subalgebra of the N = m superconformal algebra

consists of the conformal algebra times U(m), except in the special case m = 4, where

the R symmetry algebra is SU(4). The fermionic generators of this algebra consist

of the 4m supersymmetry generators Qαi and Q̄α̇
i , together with the super conformal

generators Sαi, S̄
j
α̇. The generators transform under SO(4) × U(m) as indicated by

their Index structure (an upper i Index indicates a U(m) fundamental, while a lower

i Index is a U(m) anti-fundamental). The commutation relations of the algebra may

be found, for example, in Appendix A.1 of [14]. Here, we will only need,

{Sαi, Qβj} = δji (J1)βα + δβαR
j
i + δji δ

β
α(
H

2
+ r

4−m
4m

) (2.10)

where (J1)βα are the SU(2) generators in spinor notation, Rj
i are the SU(m) generators

and r is the U(1) generator. As in the previous subsection, radial quantization endows

these generators with hermiticity properties; specifically

(Qαi)† = Sαi, (Q̄α̇
i )† = S̄iα̇ (2.11)

The theory of unitary representations of the superconformal algebra is similar to

that of the conformal algebra. Irreducible representations are labeled by the energy

E and the SU(2) × SU(2) and U(m) representations of their lowest weight states.
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We label U(m) representations by their U(1) charge r (normalized such that Qαi has

charge +1 and Q̄α̇
i has charge -1) and the integers Rk (k = 1 . . .m− 1), the number

of columns of height k in the Young Tableaux for the representation.4

Lowest weight states are annihilated by the S but, generically, not by the Q

operators. Qαi have E = 1
2

and transform in the SU(2)×SU(2)×U(m) representation

with quantum numbers j1 = 1
2
, j2 = 0, r = 1, R1 = 1, Ri = 0 (i > 1).

Let |ψa〉 be the set of lowest weight states of this algebra that transforms in the

representation (E, j1, j2, r, Ri). The states Qαi|ψa〉 transform in all the Clebsh Gordan

product representations; the lowest norm among these states occurs for those that

have quantum numbers (E + 1
2
, j1 − 1

2
, j2, r + 1, R1 + 1, Rj); the value of the norm of

these states is given by [7]

2‖χ1‖2 = E + 2δj1,0 − E1(j1, r, Ri) ,

E1 ≡ 2 + 2j1 + 2

∑m−1
p=1 (m− p)Rp

m
+
r(4−m)

2m
.

(2.12)

In a similar fashion, of the states of the form Q̄α̇i|ψ〉 the lowest norm occurs for those

that transform in (E+ 1
2
, j1, j2− 1

2
, r− 1, Rk, Rm−1 + 1), and the norm of these states

is equal to [7]

2‖χ2‖2 = E + 2δj2,0 − E2(j1, j2, r, Ri)

E2 ≡ 2 + 2j2 +
2
∑m−1

p=1 pRp

m
− r(4−m)

2m
.

(2.13)

Clearly unitarity demands that ‖χ1‖2 ≥ 0 and ‖χ2‖2 ≥ 0. As for the conformal

group, representations with either ‖χ1‖2 = 0 or ‖χ2‖2 = 0 or both zero are allowed.

4Rk may also be thought of as the eigenvalues of the highest weight vectors under the diagonal
generator Rk whose kth diagonal entry is unity, (k + 1)th entry is −1, and all other are zero, in the
defining representation.
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In such representations the zero norm states and all their descendants are simply set

to zero, yielding short representations.

In the special case j1 = 0 the positivity of the norm at level 2 yields more informa-

tion. Of states of the form QαiQβj|ψa〉 (where |ψa〉 are the lowest weight states), those

that have the smallest norm transform in the representation (E + 1, 0, j2, r + 2, R1 +

2, Rj). The norm of these states turns out to be proportional to (E−E1)(E−E1 +2)

where E1 is defined in (2.12). Thus unitarity disallows representations in the window

E1 − 2 < E < E1. Representations at E = E1 − 2 and E = E1 are both short and

both allowed. Representations at E = E1 − 2 are special because they are separated

from long representations (with the same value of all other charges) by an energy gap

of two units. All these remarks also apply to the special case j2 = 0, upon replacing

Qαi with Q̄α̇
i and E1 with E2.

In [12], Dolan and Osborn, performed a comprehensive tabulation of short rep-

resentations of the d = 4 superconformal algebras. We will adopt a notation that is

slightly different from theirs. Representations are denoted by xLxR
E,j1,j2,r,Ri where

xL =



a if E > E1

c if E = E1 and j1 ≥ 0

b if E = E1 − 2 and j1 = 0

(2.14)

and

xR =



a if E > E2

c if E = E2 and j2 ≥ 0

b if E = E2 − 2 and j2 = 0

(2.15)
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Further, we will usually omit to specify the first (energy) subscript on all short rep-

resentations as this energy is determined by the other charges. Thus representations

denoted by aa are long; all other representations are short.

2.2.4 The Null Vectors in Short Representations

We now study the nature of the null vectors in short representations in more detail.

Consider a representation of the type cx, with j1 > 0, where x is either a, c or b.

Such a representation has ‖χ1‖2 = 0. The descendants of the null-state form another

representation of the superconformal algebra. This representation also has null states5

characterized by their own value of (‖χ′1‖2, ‖χ′2‖2). A short calculation 6shows that

‖χ′1‖2, ‖χ′2‖2)/ = (0, ‖χ2‖2) . It follows that the Q null states of a representation of

type cx are generically also of the type cx. The exception to this rule occurs when

j1 = 0, in which case the null states are of type bx. Of course analogous statements

are also true for Q̄ null states. All of this may be summarized in a set of decomposition

formulae, for the supercharacters,

χ[R] = TrR
[
(−1)2(J1+J2)G

]
, (2.16)

where G is an arbitrary element of the superconformal group. These formulae describe

how a long representation decomposes into a set of short representation when its

5When we say that a short representation has ‘null states’ of a particular type we mean the
following. When we lower the energy of a long representation down to its unitarity bound (E1 or
E2), the long representation splits into a positive norm short representation m, plus a set of null
representations m′. We describe this situation by the words ‘the short representation m has null
representations m′. As is clear from this definition, it is meaningless to talk of the null state content
of representations of the sort bx or xb, as these representations are separated by a gap from long
representations.

6(‖χ′1‖2, ‖χ′2‖2) = (1
2 +1−2(m−1)/m−(4−m)/2m, ‖χ2‖2− 1

2 +2/m+(4−m)/2m) = (0, ‖χ2‖2).
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energy hits the unitarity bound.

lim
ε→0

χ[aaE1+ε,j1,j2,r,Ri ] = χ[c̃aj1,j2,r,Ri ] + χ[c̃aj1− 1
2
,j2,r+1,R1+1,Rj

], E1 > E2

lim
ε→0

χ[aaE2+ε,j1,j2,r,Ri ] = χ[ac̃j1,j2,r,Ri ] + χ[ac̃j1,j2− 1
2
,r−1,Rk,Rm−1+1], E2 > E1

lim
ε→0

χ[aaE2+ε,j1,j2,r,Ri ] = χ[c̃c̃j1,j2,r,Ri ] + χ[c̃c̃j1− 1
2
,j2,r+1,R1+1,Rj

]+

χ[c̃c̃j1,j2− 1
2
,r−1,Rk,Rm−1+1] + χ[c̃c̃j1− 1

2
,j2− 1

2
,r,R1+1,Rl,Rm−1+1], E1 = E2

(2.17)

where, in this equation and, as far as possible, in the rest of the paper, we use the

Index convention

i = 1 . . .m− 1, j = 2 . . .m− 1, k = 1 . . .m− 2, l = 2 . . .m− 2. (2.18)

On the right hand side of (2.17) we have used the notation given in table 2.2.4.

Table 2.1: Short Representations

Symbol Denotation

c̃aj1,j2,r,Ri
caj1,j2,r,Ri , j1 ≥ 0

ba0,j2,r+1,R1+1,Rj , j1 = −1
2

ac̃j1,j2,r,Ri
acj1,j2,r,Ri , j2 ≥ 0

abj1,0,r−1,Rk,Rm−1+1, j2 = −1
2

c̃c̃j1,j2,r,Ri

ccj1,j2,r,Ri , j1 ≥ 0, j2 ≥ 0
cbj1,0,r−1,Rk,Rm−1+1, j2 = −1

2
, j1 ≥ 0

bc0,j2,r+1,R1+1,Rj , j1 = −1
2
, j2 ≥ 0

bb0,0,r,R1+1,Rl,Rm−1+1, j1 = j2 = −1
2

2.2.5 Indices For Four Dimensional Super Conformal Alge-

bras

We now turn to a study of the Indices for these algebras. Using (2.17) it is not

difficult to convince oneself that the set of Indices for the four dimensional supercon-

formal field theories is a vector space that is spanned by
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1. The number of representations of the sort bx with R1 = 0 or R1 = 1 plus the

number of representations of the sort xb with Rm−1 = 0 or Rm−1 = 1.

2. The Indices

ILj2,r̂,M,Rj
=

M∑
p=−1

(−1)p+1n[c̃x p
2
,j2,r̂−p,M−p,Rj ] (2.19)

for all values of r̂ and non negative integral values of j2,M,Rj. In the case

m = 1 we do not have the Indices M or Rj and the sum runs from p = −1 to

infinity. In the m = 4 case, simply ignore the r and r̂ subIndices.

3. The Indices

IRj1,r′′,Rk,N =
M∑

p=−1

(−1)p+1n[xc̃j1, p2 ,r′′+p,Rk,N−p] (2.20)

for all values of r′′ and non negative integral values of of j1, Rk, N , with the

same remarks for m = 1, 4.

In the special case that representations that contribute to the sum in (2.19) and (2.20)

have quantum numbers on which E1 = E2
7, the Indices (2.19) and (2.20) are subject

to the additional constraints

N∑
p=−1

(−1)pILp
2
,r′′′+p,M,Rl,N−p =

M∑
p=−1

(−1)pIRp
2
,r′′′−p,M−p,Rl,N (E1 = E2) (2.21)

for all values of r′′′ = −∞ . . .∞, and non negative integral values of M,N,Rl.

These results are explained in more detail in Appendix B.1 of [14] which also

presents a detailed listing of the absolutely protected multiplets, for the N = 1, 2, 4

superconformal algebras.

7If this relation is true for any term that contributes to the sum, it is automatically true on all
other terms as well.
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2.3 A Trace Formula for the Index

The supercharges Qαi transform in the fundamental or (1, 0, . . . , 0) representation

of SU(m). Let Q ≡ Q−
1
2
,1, the supercharge whose SU(2)×SU(2) quantum numbers

are (j3
1 , j

3
2) = (−1

2
, 0), that has r = 1, and whose SU(m) quantum numbers are

(1, 0, . . . 0). Let S ≡ Q†. Then (see (2.10))

2{S,Q} = H − 2J1 − 2
m−1∑
k=1

m− k
m

Rk −
(4−m)r

2m
= E − (E1 − 2) ≡ ∆. (2.22)

It follows from (2.22) that every state in a unitary representation of the superconfor-

mal group has ∆ ≥ 0. Note that the Jacobi identity implies that Q and S commute

with ∆.

Consider a unitary representation R of the superconformal group that is not neces-

sarily irreducible. Let R∆0 denote the linear vector space of states with ∆ = ∆0 > 0.

It follows from (2.22) that if |ψ〉 is in R∆0 then

|ψ〉 = Q
S

∆0

|ψ〉+ S
Q

∆0

|ψ〉. (2.23)

Let RQ
∆0

denote the subspace of R∆0 consisting of states annihilated by Q and RS
∆0

the set of states in R∆0 that are annihilated by S. It follows immediately from (2.23)

(and the unitarity of the representation) that R∆0 = RQ
∆0

+RS
∆0

and that S|ψ〉 = |ψ′〉

is a one to one map from RQ
∆0

to RS
∆0

(Q/∆0 provides the inverse map).

Now consider the Witten Index

IWL = TrR
[
(−1)F exp(−β∆ +M)

]
(2.24)

where M is any element of the subalgebra of the superconformal algebra that com-

mutes with Q and S. We discuss this subalgebra in detail in the next subsection.
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It follows that the states in R∆0 do not contribute to this Index, the contribution of

RQ
∆0

cancels against that of RS
∆0

. Consequently, IWL receives contributions only from

states with ∆ = 0, i.e. those states that are annihilated by both Q and S. Thus,

despite appearances, (2.24) is independent of β. As no long representation contains

states with ∆ = 0, such representations do not contribute to IWL. It also follows

from continuity that IWL evaluates to zero on groups of short representations that a

long representation breaks up into when it hits unitarity threshold. As a consequence

IWL is an Index; it cannot change under continuous variations of the superconformal

theory, and must depend linearly on the Indices, IL and IR, listed in the previous

section. We will explain the relationship between IWL and IL in more detail in sub-

section 3.2 and 3.3 below. The main result of the following subsections is to show

that (2.24) (and its IWR version) completely capture the information contained in the

Indices defined in the previous section, which is all the information about protected

representations that can be obtained without invoking any dynamical assumption.

2.3.1 The Commuting Subalgebra

In this subsection we briefly describe the subalgebra of the superconformal algebra

that commutes with the SU(1|1) algebra spanned by Q,S,∆.

TheN = m, d = 4 superconformal algebra is the super-matrix algebra SU(2, 2|m).8

Supersymmetry generators transform as bifundamentals under the bosonic subgroups

SU(2, 2) and SU(m). It is not difficult to convince oneself that the commuting sub-

8For m = 4 we have PSU(2, 2|4).
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algebra we are interested in is SU(2, 1|m− 1)9. The generators of SU(2, 1|m− 1) are

related to those of SU(2, 2|m) via the obvious reduction. In more detail, the bosonic

subgroup of SU(2, 1|m− 1) is SU(2, 1)× U(m− 1). The U(m− 1) factor sits inside

the superconformal U(m) setting all elements the first row and first column to zero,

except for the 11 element which is set to one. The Cartan elements (E ′, j′2, r
′, R′i) of

the subalgebra are given in terms of those for the full algebra by

E ′ = E + j1, j′2 = j2, r′ =
(m− 1)r

m
−

m−1∑
p=1

m− p
m

Rp, R′k = Rk+1. (2.25)

where R′k are the Cartan elements of U(m−1) and r′ is the U(1) charge in U(m−1).

We will think of (2.25) as defining a (many to one) map from (E, j1, j2, r, Ri) to

(E ′, j′2, r
′, R′i)

We will be interested in the representations of the subalgebra, SU(2, 1|m − 1),

that are obtained by restricting a representation of the full algebra, SU(2, 2|m), to

states with ∆ = 0. Null vectors, if any, of SU(2, 1|m− 1) are inherited from those of

SU(2, 2|m). It is possible to show that SU(2, 1|m− 1) is short only when SU(2, 2|m)

is one of the representations cb, cc or if R is bx with R1 = 0. We direct the reader to

Appendix B.3 of [14] for a further discussion of this issue.

2.3.2 IWL expanded in sub-algebra characters with IL as co-

efficients

In this subsection we present a formula for Index IWL as a sum over super char-

acters of the commuting subalgebra, SU(2, 1|m− 1).

9Or PSU(2, 1|3) for m = 4.
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It is not difficult to convince oneself that on any short irreducible representation

R of the superconformal algebra SU(2, 2|m), IWL evaluates to the supercharacter

of a single irreducible representation R′ of the subalgebra SU(2, 1|m − 1). More

specifically we find

IWL[bx0,j2,r,Ri ] =χsub[~b]

IWL[cxj1,j2,r,Ri ] =(−1)2j1+1χsub[~c]

(2.26)

where χsub is the supercharacter

χs[R
′] = TrR′

[
(−1)2J2G′

]
, (2.27)

where G′ is an element of the Cartan subgroup. The vectors ~b and ~c specify the high-

est weight of the representation of the subalgebra in the Cartan basis [E ′, j′2, r
′, R′k]

defined in (2.25).

~b = [
3

2
r − 2r′, j2, r

′, Rj],

~c = [3 + 3(j1 + r/2)− 2r′, j2, r
′, Rj]

(2.28)

where r′ is the function defined in (2.25); we emphasize the fact that it depends on r

and R1 only through the combination r −R1.

Notice that the functions that specify the character of the subalgebra, (2.28), are

not one to one. In fact, it follows from (2.26), (2.28), that IWL evaluates to the same

subalgebra character for each representation R that appears in the sum in (2.19), for

fixed values of j2, r
′,M,Ri. Notice that by formally setting j1 = −1/2 in the second

line of (2.28) we get the Cartan values for the subalgebra that we expect for the

representation b according to the definition of c̃ in table 2.2.4. This implies that we

can replace c in (2.26) by c̃. More specifically

IWL[c̃ p
2
,j2,r̂−p,M−p,Rj ] = (−1)pIWL[c̃0,j2,r̂,M,Rj ] (2.29)
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It follows immediately from (2.26), (2.29), that IWL, evaluated on any (in general

reducible representation) A of the superconformal algebra evaluates to

IWL[A] =
∑
j2,r,Ri

(
n[bx0,j2,r,0,Ri ]χsub[

~b0] + n[bx0,j2,r,1,Ri ]χsub[
~b1]
)

+
∑

j2,r′,M,Ri

ILj2,r̂,M,Ri
χsub[~c0]

(2.30)

Where ~b0,1 are given by (2.28) with R1 = 0, 1 respectively and ~c0 is given by (2.28)

with j1 = 0, r = r̂, R1 = M . The quantities n[xxj1,j2,r,Ri ] in (2.30) are the number

of copies of the irreducible representation, with listed quantum numbers, that appear

in A, and ILj2,r̂,M,Ri
are the Indices (2.19) made out of these numbers.

Notice that most of the discussion in this section goes through unchanged if we

were to consider the supergroup SU(2|4) (or SU(2|m)). The representation theory of

this group was studied in [15, 16] and the Index was used in [17] to analyze various

field theories with this symmetry. The Index for the plane wave matrix model is given

by an expression like (4.3) below but without the denominators (this is then inserted

into (4.1)). Notice that the fact that the Index for N = 4 Yang Mills and the Index

for the plane wave matrix model are different implies that we cannot continuously

interpolate between N = 4 super Yang Mills and the plane wave matrix model while

preserving the SU(2|4) symmetry. In [18] BPS representations and an Index for

SU(1|4) were considered.

2.3.3 The Witten Index IWR

As in Section 2, we may define a second Index IWR. The theory for this Index is

almost identical. We focus on the supercharge, Q̄
− 1

2
m−1 which has SU(2)×SU(2) quan-
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tum numbers, (j3
1 , j

3
2) = (0,−1

2
), r = −1 and SU(4) quantum numbers (0, 0, . . . , 1).

Let S̄ = Q̄†.

It is then easy to verify that

2{S̄, Q̄} = H − 2J2 − 2
m−1∑
k=1

k

m
Rk +

(4−m)r

2m
= E − (E2 − 2) ≡ ∆̄. (2.31)

It follows from (2.31) that every state in a unitary representation of the superconfor-

mal group has ∆̄ ≥ 0.

Following (2.24) we define

IWR = TrR
[
(−1)F exp(−β∆̄ + M̄)

]
, (2.32)

where M̄ is the part of the superconformal algebra that commutes with Q̄ and S̄.

The Cartan elements of this subalgebra are given in terms of those of the algebra

by

E ′ = E + j2, j′1 = j1, r′ =
(m− 1)(r +Rm−1)

m
+

m−2∑
p=1

p

m
Rp, R′k = Rk. (2.33)

Note that r′ depends on r and Rm−1 only through the combination r+Rm−1. We then

find that the Index (2.32) is zero on long representations and for c,b representations

it is equal to

IWR[bxj1,0,r,Ri ] =χsub[
~̄b]

IWR[cxj1,j2,r,Ri ] =(−1)2j2+1χsub[~̄c]

(2.34)

where the representation of the subalgebra is specified by the vectors ~̄b, ~̄c in the basis

[E ′, j′1, r
′, R′k] specified by (2.33).

~̄b = [−3

2
r + 2r′, j1, r

′(r +Rm−1, Rk), Rk],

~̄c = [3 + 3(j2 − r/2) + 2r′, j1, r
′(r +Rm−1, Rk), Rk].

(2.35)
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where r′ is the function in (2.33) . We find that on a general representation (not

necessarily irreducible) of the superconformal algebra, IWR evaluates to

IWR[R] =
∑
j1,r,Ri

(
n[xbj1,0,r,Rk,0]χsub[

~̄b0] + n[xbj1,0,r,Rk,1]χsub[
~̄b1]
)

+
∑

j1,r′′,Rk,N

IRj1,r′′,Rk,Nχsub[~̄c0]

(2.36)

Where ~̄b0,1 are given by (2.35) with Rm−1 = 0, 1 respectively and ~̄c0 is given by (2.35)

with j2 = 0, r = r′′, Rm−1 = N . The quantities n[xxj1,j2,r,Ri ] in (2.30) are the number

of copies of the irreducible representation, with listed quantum numbers, that appear

in R, and IRj1,r′′,Rk,N are the Indices (2.20) made out of these numbers.

The main lesson we should extract from (2.30), (2.36) is that each of the Indices

defined in section two are multiplied by different SU(1, 2|m− 1) (or SU(2, 1|m− 1))

characters in [2.30,2.36]. This shows that the Witten Indices (2.24) (2.32) capture all

the protected that follows from the supersymmetry algebra alone.

2.4 Computation of the Index in N = 4 Yang Mills

on S3

2.4.1 Weak Coupling

We will now evaluate the Index (2.24) for free N = 4 Yang Mills on S3. In the

free theory this Index may be evaluated either by simply counting all gauge invariant

states with ∆ = 0 and specified values for other charges [3, 4] or by evaluating a

path integral [4]. The two methods give the same answer. We will give a very brief

description of the path integral method, referring the reader to [4] for all details. One
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evaluates the path integral over the ∆ = 0 modes of all the fields of the N = 4 theory

on S3 × S1 with periodic boundary conditions for the fermions around S1 (to deal

with the (−1)F insertion) and twisted boundary conditions on all charged fields (to

insert the appropriate chemical potentials). While the path integral over all other

modes may be evaluated in the one loop approximation, the path integral over the

zero mode of A0 on this manifold must be dealt with exactly (as the integrand lacks a

quadratic term for this mode, the integral over it is always strongly coupled at every

nonzero coupling no matter how weak). Upon carefully setting up the problem one

finds that the integral over A0 is really an integral over the holonomy matrix U , and

the Index IWL evaluates to

IYM =

∫
[dU ] exp

{∑ 1

m
f(tm, ym, um, wm)tr(U †)mtrUm

}
(2.37)

where f(t, y, u, w) is the Index IWL evaluated on space of ‘letters’ or ‘gluons’ of the

N = 4 Yang Mills theory. As a consequence, in order to complete our evaluation of

the Index (2.37) we must merely evaluate the single letter partition function f .

f may be evaluated in many ways. Group theoretically, we note that the letters

of Yang Mills theory transform in the ‘fundamental’ representation of the supercon-

formal group (the representation whose quantum lowest weight state has quantum

numbers E = 1, j1 = j2 = 0, R1 = R3 = 0 and R2 = 1). f is simply the supertrace

over this representation and may be evaluated by purely group theoretic techniques.

It is useful, however, to re-derive this result in a more physical manner. The full

set of single particle ∆ = 0 operators in Yang Mills theory is given by the fields listed

in Table 2.2. below, acted on by an arbitrary numbers of the two derivatives ∂+± (see

the last row of Table 2.2) modulo the single equation of motion listed in the second
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Table 2.2: Letters with ∆ = 0

Letter (−1)F[E; j1, j2] [q1,q2,q3] [R1,R2,R3]
X, Y, Z [1,0,0] [1,0,0]+cyclic [0,1,0]+[1,-1,1]+[1,0,-1]
ψ+,0;−++ + cyc −[3

2
, 1

2
, 0] [−1

2
, 1

2
, 1

2
] + cyc [1,−1, 0], [0, 1,−1], [0, 0, 1]

ψ0,±,+++ −[3
2
, 0,±1

2
] [1

2
, 1

2
, 1

2
] [1, 0, 0]

F++ [2, 1, 0] [0, 0, 0] [0, 0, 0]∑
± ∂+±ψ0,∓;+++ = 0 [5

2
, 1

2
, 0] [1

2
, 1

2
, 1

2
] [1, 0, 0]

∂+± [1, 1
2
,±1

2
] [0, 0, 0] [0, 0, 0]

last row of Table 2.2).

In Table 2.2 we have listed both the SU(4) Cartan charges R1, R2, R3 used earlier

in this paper, as well as the SO(6) Cartan charges, q1, q2, q3 (the eigenvalues in each

of the 3 planes of the embedding R6) of all fields.

To find f we evaluate (2.24) by summing over the letters

f =
∑

letters

(−1)F t2(E+j1)y2j2vR2wR3

=
t2(v + 1

w
+ w

v
)− t3(y + 1

y
)− t4(w + 1

v
+ v

w
) + 2t6

(1− t3y)(1− t3

y
)

.

(2.38)

Remarkably the expression for 1− f factorizes

1− f =
(1− t2/w)(1− t2w/v)(1− t2v)

(1− t3y)(1− t3/y)
(2.39)

The expression for IWL
YM is well defined (convergent) only if t, y, v, w have values such

that every contributing letter has a weight of modulus < 1; applying this criterion

to the three scalars and the two retained derivatives yields the restriction t2v <

1, t2/w < 1, t2v/w < 1, t3y < 1, t3/y > 1. It follows from (2.39) that f < 1 for

all legal values of chemical potentials.

We will now proceed to evaluate the integral in (2.37), using saddle point tech-

niques, in the large N limit (note, however, that (2.37) is the exact formula valid for
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all N). To process this formula, we convert the integral over U to an integral over

its N2 eigenvalues eiθj . We can conveniently summarize this information in a density

distribution ρ(θ) with: ∫ π

−π
dθ ρ(θ) = 1 (2.40)

This generates an effective action for the eigenvalues given by [4]

S[ρ(θ)] = N2

∫
dθ1

∫
dθ2ρ(θ1)ρ(θ2)V (θ1 − θ2) =

=
N2

2π

∞∑
n=1

|ρn|2Vn(T ),

(2.41)

with

Vn =
2π

n
(1− f(tn, yn, un, wn)),

ρn =

∫
dθρ(θ)einθ.

(2.42)

As (1−f) is always positive for all allowed values of the chemical potential, it is clear

that the action (2.41) is minimized by ρn = 0, n > 0; ρ0 = 1. The classical value

of the action vanishes on this saddle point, and the Index is given by the gaussian

integral of the fluctuations of ρn around zero. This allows us to write

IWL
YM

∣∣
N=∞ =

∞∏
n=1

1

1− f(tn, yn, vn, wn)
. (2.43)

If we think about the ’t Hooft limit of the theory it is also interesting to compute the

Index over single trace operators. This is given by

Zs.t. =−
∞∑
r=1

ϕ(r)

r
log [1− f(tr, yr, vr, wr)]

=
t2/w

1− t2/w
+

vt2

1− vt2
+

t2w/v

1− t2w/v
− t3/y

1− t3/y
− t3y

1− t3y

(2.44)

where ϕ is the Euler Phi function and we used that
∑

r
ϕ(r)
r

log(1 − xr) = −x
1−x . The

result (2.43) is simply the multiparticle contribution that we get from (2.44) .
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Note that the action (2.41) vanished on its saddle point; as a consequence (2.43)

is independent of N in the large N limit. This behavior, which is is reminiscent

of the partition function of a large N gauge theory in its confined phase, is true of

(2.43) at all finite values of the chemical potential. In this respect the Index IYM

behaves in a qualitatively different manner from the free Yang Mills partition function

over supersymmetric states (see the next section). This partition function displays

confined behavior at large chemical potentials (analogous to low temperatures) but

deconfined behavior (i.e. is of order eN
2
) at small chemical potentials (analogous to

high temperature). It undergoes a sharp phase transition between these two behaviors

at chemical potentials of order unity. Several recent studies of Yang Mills theory on

compact manifolds have studied such phase transitions, and related them to the

nucleation of black holes in bulk duals [3, 4, 19, 20, 21, 22, 23, 24]. The Index IWL
YM

does not undergo this phase transition, and is always in the ‘confined’ phase. We

interpret this to mean that it never ‘sees’ the dual supersymmetric black hole phase.

At first sight we might think that this is a contradiction, since the black holes give

a large entropy. On the other hand we are unaware of a clear argument which says

that black holes should contribute to the Index. For example, it is unclear whether the

Euclidean black hole geometry should contribute to the path integral that computes

the Index. While the Lorentzian geometry of the black hole is completely smooth, if

we compactify the Euclidean time direction with periodic boundary conditions for the

spinors, then the corresponding circle shrinks to zero size at the horizon, which would

represent a kind of singularity. In section 3.6 we present a mechanism for how this

phenomenon (the excision of the black hole saddle point) might work in Lorentzian



Chapter 2: An Index for 4 Dimensional Superconformal Field Theories 36

space.

We now present the expression for the Index in a new set of variables that are

more symmetric, and for some purposes more convenient, in the study of Yang Mills

theory. We will use these variables in the next section. Let us choose to parameterize

charges in the subalgebra by

J2, L1 = E + q1 − q2 − q3, L2 = E + q2 − q1 − q3, L3 = E + q3 − q1 − q2. (2.45)

Note that Li are positive for all Yang Mills letters. A simple change of basis, yields

1− f =
(1− e−2γ1)(1− e−2γ2)(1− e−2γ3)

(1− e−ζ−γ1−γ2−γ3) (1− e+ζ−γ1−γ2−γ3)
(2.46)

where

f =
∑

letters

(−1)F eγ1L1+γ2L2+γ3L3+2ζj2 . (2.47)

In section six we will write an explicit exact formulas for the Index (2.37) for

γ3 =∞.

Further studies on the spectrum of free Yang Mills can be found in [25, 26, 27, 28].

2.4.2 Strong Coupling

According to the AdS/CFT correspondence, N = 4 Yang Mills theory on S3 at

large N and large λ has a dual description as a weakly coupled IIB theory on the large

radius AdS5 × S5. At fixed energies in the large N limit, the spectrum of the bulk

dual is a gas of free gravitons, plus superpartners, on AdS5 × S5. In this subsection,

we will compute the Index IWL
YM over this gas of masssless particles, and find perfect

agreement with (2.43).
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Note that states with energies of order one do not always dominate the partition

function at chemical potentials of unit order. At small values of the chemical potential,

the usual partition function of strongly coupled Yang Mills theory is dominated by

black holes. However, as we have explained in the previous subsection, we do not see

an argument for the black hole saddle point to contribute to the Index, and apparently

it does not.

We now turn to the computation. When the spectrum of (single particle) su-

pergravitons of Type IIB supergravity compactified on AdS5 × S5 is organized into

representations of the superconformal group, we obtain representations that are built

on a lowest weight state that is a SU(2)× SU(2) in the (n, 0, 0)SO(6) = (0, n, 0)SU(4)

representation of the R-symmetry group [29] . The representation with n = 1 is

the Yang-Mills multiplet. The representation with n = 2 is called the ’supergravi-

ton’ representation. These representations preserve 8 of 16 supersymmetries. In the

language of section 2, they are of the form bb. When restricted to ∆ = 0, they

yield a representation of the subalgebra that we shall call Sn. Sn has lowest weights

E ′ = n, j2 = 0, R2 = n,R3 = 0.

In the table below we explicitly list the SU(2, 1)× SU(3) content of Sn using the

notation [E ′, j′2, R
′
1, R

′
2] where [E ′, j′2] specify the weight of the lowest weight state

under the compact U(1)×SU(2) subgroup of SU(2, 1) and [R′2, R
′
3] are Dynkin labels

for SU(3). This can also be found by looking at the list of Kaluza Klein modes in

[29] .

For n = 2 we just drop the lines containing n− 3.

On the other hand, for n = 1 we have further shortening and we find Table 2.4.
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Table 2.3: Content of Sn

(−1)F E′ J′2 R′1 R′2
n 0 n 0
−(n+ 1

2
) 1

2
n-1 0

n+ 1 0 n-2 0
−(n+ 1) 0 n-1 1
n+ 3

2
1
2

n-2 1
−(n+ 2) 0 n-3 1
n+ 2 0 n-1 0
−(n+ 5

2
) 1

2
n-2 0

n+ 3 0 n-3 0

Table 2.4: Content of S1

(−1)F E′ J′2 R′1 R′2
1 0 1 0
-3

2
1
2

0 0
-2 0 0 1
3 0 0 0
3 0 0 0 10

The Index on single-particle states may now be calculated in a straightforward

manner. The supercharacter of Sn is given by

χSn =
(t2nχ

SU(3)
n,0 (v, w)− t2n+1χ

SU(3)
n−1,0(v, w)(y + 1/y) + . . .)

(1− t3y)(1− t3/y)
. (2.48)

The SU(3) character that occurs above is described by the Weyl Character Formula.

To obtain the Index, we simply need to calculate

Isp =
∞∑
n=2

χSn + χS1. (2.49)

The sums in (2.49) are all geometric and are easily performed, yielding the single

particle contribution

Isp =
t2/w

1− t2/w
+

vt2

1− vt2
+

t2w/v

1− t2w/v
− t3/y

1− t3/y
− t3y

1− t3y
(2.50)
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This matches precisely (2.44) .

From this, we may obtain the Index of the Fock Space. In particular,

IWL
grav = exp

[∑
n

1

n
Isp[tn, vn, wn, yn]

]

=
∞∏
n=1

(1− t3n/yn)(1− t3nyn)

(1− t2n/wn)(1− vnt2n)(1− t2nwn/vn)

(2.51)

in perfect agreement with (2.43).

Finally, let us point out that the value of the Index is the same in N = 1 marginal

deformations of N = 4.11

2.5 Discussion

This chapter is based on work that was done in [14]. After the appearance of this

paper, there have been several important extensions of this work; here we mention

two.

The first is the computation of a similar Index in quiver gauge theories that arise

when we consider D3 branes, not in flat 10 dimensional space but in R4×R6/Γ, where

Γ is some orbifolding group. This gives rise to a duality between string theory on

AdS5×S5/Γ and a supersymmetric quiver gauge theory. A computation very similar

to the one above was performed in [30] and once again perfect agreement was found

between the gauge theory and gravity answers.

Second, the construction above may be easily generalized to superconformal field

theories in other dimensions. This was done in [31] and the results will be described

11These theories have the superpotential Tr[eβφ1φ2φ3 − e−βφ1φ3φ2 + c(φ3
1 + φ3

2 + φ3
3)]. If c is

nonzero, then we should set all chemical potentials γi to be equal in the original N = 4 result, since
we lose two of the U(1) symmetries.
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in Chapter 4

We now proceed to a study of other kinds (i.e not Indices) supersymmetric parti-

tion functions in AdS5/CFT4.



Chapter 3

Supersymmetric Partition

Functions in AdS5/CFT4

3.1 Introduction

In this chapter, we continue our study of the AdS5/CFT5 correspondence. How-

ever, now we will focus on supersymmetric partition functions that are not protected

purely by group theory.

Such partition functions are of great interest, partly because it is known that

AdS5 × S5 support BPS black holes that preserve 1
16

of its supersymmetries. Unfor-

tunately, as we saw in the last chapter, the Index over 1
16

BPS states does not grow

fast enough to account for the entropy of BPS black holes in AdS5 × S5. found in

[32, 33, 34].

This is not a contradiction with AdS/CFT ; the entropy of a black hole counts all

supersymmetric states with a positive sign whereas our Index counts the same states

41
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up to sign. It is possible for cancellations to ensure that the Index is much smaller

than the partition function evaluated over supersymmetric states of the theory. This

is certainly what happens in the free N = 4 theory, where both quantities (the Index

and the partition function) may explicitly be computed, and is presumably also the

case at strong coupling.

It may well be possible to provide a weak coupling microscopic counting of the

entropy of BPS black holes [32, 33, 34] in AdS5 × S5; however such an accounting

must incorporate some dynamical information about N = 4 super Yang Mills beyond

the information contained in the superconformal algebra. In this chapter we take

some steps towards understanding the entropy of these black holes.

First, we note that, for large (compared to the AdS radius) black holes a naive

computation of the simple partition function of BPS states in the free theory gives a

formula which has similar features to the black hole answer.

Then we provide a counting of the entropy for small black holes in terms of D-

branes and giant gravitons in the interior. The counting is rather similar to the one

performed for the D1D5p black holes [35]. In particular, we account for the entropy

of small black holes by modelling them as states in the sigma model that describes

fluctuations on the moduli space of 1
8

BPS giant gravitons. Related to this, we also

find that in the limit of small charges, these black holes allow a near-horizon gravity

description as BTZ black holes in AdS3. This is work that was first done in [36].

A second motivation for the study in this chapter is that the Indices described

in the previous chapter do not exhaust all interesting calculable information about

supersymmetric states in all superconformal field theory; in specific examples it is
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possible to extract more refined information about supersymmetric states by adding

extra input. An explicit example where dynamical information allows us to make

more progress is the computation of the chiral ring [37, 38]. In the case of N = 4

Yang Mills theory, we write down explicit counting formulas for 1/2, 1/4 and 1/8

BPS states. The counting can be done in terms of N particles in harmonic oscillator

potentials. For very large charges the entropy in these states grows linearly in N .

By taking the large N limit of these partition functions we show that they display a

second order phase transition which corresponds to the formation of a Bose-Einstein

condensate.

3.2 The partition function over 1
16 BPS states

In this section we will compute the partition function over BPS states that are

annihilated by Q and S in N = 4 Yang Mills at zero coupling and strong coupling.

We perform the first computation using the free Yang Mills action, and the second

computation using gravity and the AdS/CFT correspondence, together with a certain

plausible assumption. Specifically, we assume that the supersymmetric density of

states at large charges is dominated by the supersymmetric black holes of [32, 33, 34].

At small values of chemical potentials (when these supersymmetric partition func-

tions are dominated by charges that are large in units of N2) we find that these parti-

tion functions are qualitatively similar at weak and strong coupling but differ in detail,

in these two limits. Moreover, each of these partition functions differs qualitatively

from Index computed in the previous section.

Before turning to the computation, it may be useful to give a more formal de-
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scription of the BPS states annihilated by Q and S. Q may formally be thought of

as an exterior derivative d, its Hermitian conjugate S is then d∗ and ∆ is the Lapla-

cian dd∗ + d∗d. States with ∆ = 0 are harmonic forms that, according to standard

arguments (see [39]), those arguments may all be reworded in the language of Q and

S and Hilbert spaces) are in one to one correspondence with the cohomology of Q.

IWL, the (−1)degree weighted partition function over this cohomology is simply the

(weighted) Euler Character over this cohomology.

3.2.1 Partition Function at ∆ = 0 in free Yang Mills

Let

Zfree = Tr∆=0

[
x2Heµ1q1+µ2q2+µ3q3+2ζJ2

]
(3.1)

where x = e
−β
2 , and q1, q2, q3 correspond to the SO(6) Cartan charges (related to

R1, R2, R3 by the formulas in Appendix C of [14]). In Free Yang Mills theory this

partition function is easily computed along the lines described in subsection 4.1; the

final answer is given by the formula [3, 4]

Z =

∫
DU exp

[∑
n

(
fB(xn, nµi, nζ) + (−1)n+1fF (xn, nµi, nζ)

) TrUnTrU−n

n

]
(3.2)

where U is a unitary matrix and the relevant ‘letter partition functions’ are given by

fB =
(eµ1 + eµ2 + eµ3)x2 + x4

(1− x2eζ)(1− x2e−ζ)

fF
= x3(2 cosh ζe

µ1+µ2+µ3
2 + e

µ1+µ2−µ3
2 + e

µ1−µ2+µ3
2 + e

−µ1+µ2+µ3
2 )− x5e

µ1+µ2+µ3
2

(1− x2eζ)(1− x2e−ζ)

. (3.3)

As explained in the previous section, (3.2) and (3.3) describe a partition function

that undergoes a phase transition at finite values of chemical potentials. For chemical

potentials such that fB + fF < 1, the integral in (3.2) is dominated by a saddle point
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on which |TrUn| = 0 for all n. In this phase the partition function is obtained from

the one loop integral about the saddle point (as in section 4.1) and is independent

of N in the large N limit. The density of states in this phase grows exponentially

with energy, ρ(E) ∝ eβHE where βH = − ln(7−3
√

5
2

) = 1.925 and the system undergoes

a phase transition when the effective inverse temperature becomes smaller than βH

(e.g., on setting all other chemical potentials to zero, this happens at x = e
−βH

2 ).

At smaller values of chemical potentials (3.2) is dominated by a new saddle point.

In particular, in the limit ζ � 1 and β � 1, the integral over U in (3.1) is dominated

by a saddle point on which TrUnTrU−n = N2 for all n, the partition function reduces

to

lnZ = N2
∑
n

1

n

[
fB(xn, nµi, nζ) + (−1)n+1fF (xn, nµi, nζ)

]
. (3.4)

In the rest of this subsection we will, for simplicity, set µ1 = µ2 = µ3 = µ and

thereby focus on that part of cohomology with q1 = q2 = q3 ≡ q. The relevant letter

partition functions reduce to

fB =
3eµx2 + x4

(1− x2eζ)(1− x2e−ζ)

fF =

(
e

3µ
2 (2 cosh ζ − x2) + 3e

µ
2

)
x3

(1− x2eζ)(1− x2e−ζ)

(3.5)

In the limit β � 1, ζ � 1 (3.4) reduces to

lnZ = N2 1

(β2 − ζ2)
f(µ) (3.6)

where

f(µ) =
(
ζ(3) + 3Pl(3, eµ)− 3Pl(3,−e

µ
2 )− Pl(3,−e

3µ
2 )
)

(3.7)



Chapter 3: Supersymmetric Partition Functions in AdS5/CFT4 46

and the PolyLog function is defined by

Pl(m,x) =
∞∑
n=1

xn

nm
(3.8)

This partition function describes a system with energy E, angular momentum j2,

SO(6) charge (q, q, q) and entropy S given by1

2j1

N2
∼ E

N2
= 2

βf(µ)

(β2 − ζ2)2
,

2j2

N2
= 2

ζf(µ)

(β2 − ζ2)2

q

N2
=

g(µ)

β2 − ζ2

S

N2
=

3f(µ)− µg(µ)

β2 − ζ2

(3.9)

where

g(µ) =
f ′(µ)

3
=

(
Pl(2, eµ)− 1

2
Pl(2,−e

µ
2 )− 1

2
Pl(2,−e

3µ
2 )

)
. (3.10)

We see that for high temperatures, this partition function looks like a gas of massless

particles in 2+1 dimensions. Note that in this limit E ∼ 2j1 � q.

We will sometimes be interested in the partition function with only those chemical

potentials turned on that couple to charges that commute with Q and S. This is

achieved if we choose µ = β
3
. In the limit β � 1, ζ � 1 we have µ � 1 and the

partition function and charges are given by (3.6) and (3.9) with µ ∼ 0; note that

f(0) = 7ζ(3) and g(0) = π2

4
.

1Physically, the equations below describe Free Yang Mills theory at fixed values of charges in the
limit T → 0 (T is the temperature). In the free theory this limit retains only supersymmetric states
at all values of charges. On the other hand the black holes in [32, 33, 34] are supersymmetric in the
same limit only for a subfamily of charges. See the next section for more discussion on this puzzling
difference.
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Note that, although the Index IWL
YM and the cohomological partition function Zfree

both traces over Q cohomology , the final results for these two quantities in Free Yang

Mills theory are rather different. For instance, at finite but small values of chemical

potentials, lnZfree is proportional to N2 (see (3.6)) while IWL
YM is independent of N

(see (2.43)). Clearly cancellations stemming from the fluctuating sign in the definition

of IWL
YM cause the Index to see a smaller effective number of states. We explain this

further in Section 3.6.

3.2.2 Cohomology at Strong Coupling: Low energies

We now turn to the study of Q cohomology at strong coupling and low energies. In

this limit the cohomology is simply that of the free gas of supergravitons in AdS5×S5,

and may be evaluated following the method of subsection subsection 2.4.2. We will

calculate the quantity

Z = Tr
[
x2Hz2J1y2J2vR2wR3

]
(3.11)

over the supergraviton representations restricted to states of ∆ = 0. We recall that the

single particle states form an infinite series of short reps of the N = 4 superconformal

algebra where the primary is a lorentz scalar with energy n with R-charges [0, n, 0].
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The trace over single particle states may be easily calculated. The answer is 2

Zsp =
numbos + numfer

den

den = (1− x2/w)(1− x2v)(1− x2w/v)(1− x2z/y)(1− x2zy)

numfer = x3/y + x3y + x3z/v + vx3z/w + wx3z − 2x5z

+ vx7z + x7z/w + wx7z/v + x7z2/y + x7z2y

numbos = vx2 + x2/w + wx2/v − x4/v − vx4/w − wx4

+ 2x6 + x6z/(yv) + vx6z/(wy) + wx6z/y − x8z/y

+ x6zy/v + vx6zy/w + wx6zy − x8zy + x4z2 + x10z2

(3.13)

The full (multi particle) partition function over supersymmetric states may be ob-

tained by applying the formulas of Bose and Fermi statistics to (3.13).

Special limits of (3.13) will be of interest in the next section. For instance, the

limit z → 0 focuses on states with ∆ = 0 and j1 = 0, i.e. (1/8) BPS states. In this

limit (3.13) becomes

Z
1/8
bos−sp =

1− (1− x2/w)(1− vx2)(1− wx2/v) + x6

(1− x2/w)(1− vx2)(1− wx2)

Z
1/8
fer−sp =

x3(y + 1/y)

(1− x2/w)(1− vx2)(1− wx2/v)

(3.14)

2In the notation of the previous subsection, with y = eζ ,

Zres
sp = Tr

[
x2Hy2J2u2

P
qi

]
=

numres
bos + numres

fer

denres

den = (1− x2u2)3(1− x2/y)(1− x2y)

numfer = 3ux3 − 2u3x5 + 3u5x7 + (u3x3)/y + (u3x7)/y

+ u3x3y + u3x7y

numbos = 3u2x2 + x4 − 3u4x4 + 2u6x6 + u6x10

+ (3u4x6)/y − (u6x8)/y + 3u4x6y − u6x8y

(3.12)
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In terms of the γi variables introduced at the end of subsection 4.1

Z
1/8
bos−sp =

1− (1− e−2γ1)(1− e−2γ2)(1− e−2γ3) + e−2(γ1+γ2+γ3)

(1− e−2γ1)(1− e−2γ2)(1− e−2γ3)

Z
1/8
fer−sp =

e−γ1−γ2−γ3
[
eζ + e−ζ

]
(1− e−2γ1)(1− e−2γ2)(1− e−2γ3)

(3.15)

Applying the formulas for Bose and Fermi statistics, it is now easy to see that the

partition function over the Fock space, including multi-particle states, is given by

Z1/8(ζ, γ1, γ2, γ3) =
∞∏

n,m,r=0

∏
s=±1(1 + esζe−(2n+1)γ1−(2m+1)γ2−(2r+1)γ3)

(1− e−2nγ1−2mγ2−2rγ3)(1− e−(2n+2)γ1−(2m+2)γ2−(2m+2)γ3)

(3.16)

Finally, in order to compute the rate of growth of the cohomological density of

states with respect to energy, we set z, y, v, w → 1. This gives the “blind” single

particle partition function which is

Zbl
bos−sp =

x2(3− 2x2 + 8x4 − 2x6 + x8)

(1− x2)5

Zbl
fer−sp =

x3(5− 2x2 + 5x4)

(1− x2)5

(3.17)

The full partition function is given by

Zbl = exp

[∑
n

Zbl
bos−sp(xn) + (−1)n+1Zbl

fer−sp(xn)

n

]
(3.18)

Let

x = e
−β
2 . (3.19)

At small β this partition function is approximately given by

lnZ =
63ζ(6)

4β5
. (3.20)

It follows that the entropy as a function of energy is given by

S(E) = h log n(E) ∼ 6

5

(
315ζ(6)

4

) 1
6

E5/6 ≈ 2.49E5/6. (3.21)
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Note that this is slower than the exponential growth of the same quantity at zero

coupling.

3.2.3 Cohomology at Strong Coupling: High Energies

Gutowski and Reall [32, 33], and Chong, Cvetic, Lu and Pope [34] have found a

set of supersymmetric black holes in global AdS5 × S5, that are annihilated by the

supercharges Q and S. These black holes presumably dominate the supersymmetric

cohomology at energies of order N2 or larger. In this subsection we will translate the

thermodynamics of these supersymmetric black holes to gauge theory language, and

compare the results with the free cohomology of subsection 5.1.

Restricting to black holes with q1 = q2 = q3 = q these solutions constitute a two

parameter set of solutions, with thermodynamic charges, translated to Yang Mills

Language via the AdS/CFT dictionary3,

E

N2
= (a+ b)

[(1− a)(1− b) + (1 + a)(1 + b)(2− a− b)]
2(1− a)2(1− b)2

j1 + j2
N2

=
(a+ b)(2a+ b+ ab)

2(1− a)2(1− b)
j1 − j2

N2
=

(a+ b)(a+ 2b+ ab)

2(1− a)(1− b)2

q

N2
=

(a+ b)

2(1− a)(1− b)
S

N2
=
π(a+ b)

√
a+ b+ ab

(1− a)(1− b)
.

(3.22)

Setting a = 1− (β′ + ζ ′) and b = 1− (β′ − ζ ′), and assuming β′ � 1, ζ ′ � 1, (3.22)

3We have set g = 1 in [34] and set ECFT = EChong et al/G5, where G5 = GN5/R
3
AdS is the value

of Newton’s constant in units where the AdS5 radius is set to one. Shere = SChong et al/G5. For
N = 4 Yang Mills we have G5 = π

2N2 . To convert formulas in [32, 33] simply set this value for the
five dimensional Newton constant in their expressions.
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reduces to

2j1

N2
∼ E

N2
∼ 8β′

(β ′2 − ζ ′2)2

2j2

N2
∼ −8ζ ′

(β ′2 − ζ ′2)2

q

N2
∼ 1

β ′2 − ζ ′2

S

N2
∼ 2

√
3π

β ′2 − ζ ′2

(3.23)

Equations (3.22) and (3.9) have some clear similarities4 in form, but also have one

important qualitative difference. (3.9) has one additional parameter absent in (3.22).

After setting the three SO(6) charges equal the Q cohomology is parametrized by 3

charges, whereas only a two parameter set of supersymmetric black hole solutions are

available.

We should emphasize that in the generic, non BPS, situation black hole solutions

are available for all values of the 4 parameters q, j2, j1 and E [34] . It is thus possible to

continuously lower the black hole energy while keeping q, j2 and j1 fixed at arbitrary

values. The temperature of the black hole decreases as we lower its energy, until it

eventually goes to zero at a minimum energy. However the extremal black hole thus

obtained is supersymmetric (its mass saturates the supersymmetric bound) only on

a 2 dimensional surface in the 3 dimensional space of charges parameterized by q, j2

and j1. For every other combination of charges the zero temperature black holes are

not supersymmetric (their mass is larger than the BPS bound). We are unsure how

this should be interpreted5. It is possible that, for other combinations of charges, the

4This observation has also been made by H. Reall and R. Roiban.

5Note that our Index IWL
YM , when specialized to states with q1 = q2 = q3, also depends on two

rather than 3 parameters.
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cohomology is captured by as yet undiscovered supersymmetric black solutions.

In order to compare the cohomologies in (3.9) and (3.22) in more detail, we choose

µ in (3.9) so that the equations for E/N2 and q/N2 in (3.9) and (3.22) become

identical (after a rescaling of β′ and ζ ′). This is achieved provided that

f(µc)
2 = 16g(µc)

3 (3.24)

This equation is easy to solve numerically. We find µc = −0.50366± .00001 and that

f(µc) = 5.7765, g(µc) = 1.2776. Plugging in µ = µc into the entropy formula in (3.9)

we then find

SField

SBlack−Hole

=
3f(µ)
g(µ)
− µ

2
√

3π
= 1.2927 (3.25)

Another way to compare (3.9) and (3.22) is the following. First notice that the

charge q is much smaller than the energy in this limit, q � E. Let us set µ = β/3

which is the value that we have in the Index (though we do not insert the (−1)F we

have in the Index). Since we are taking the limit where β is small we can evaluate f

in (3.9) at zero, f(0) = 7ζ(3). By comparing the energies and entropies in (3.9) and

(3.22) and writing the free energy as E = N2cβ−3, where c is a “central charge” that

measures the number of degrees of freedom. Then we can compute

cgravity

cfree−field−theory

=
π3

14ζ(3)33/2
∼ 0.35458... (3.26)

It is comforting that this value is lower than one since we expect that interactions

would remove BPS states rather than adding new ones. A similar qualitative agree-

ment between the weak and strong coupling was observed between the high temper-

ature limit of uncharged black holes and the free Yang Mills theory [40] , where the

ratio (3.26) is 3/4. Note that for µ = β/3 we can approximate g in the expression for
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the charge in (3.9) by g(0) 6= 0. This agrees qualitatively with the expression coming

from black holes.

3.3 Small Supersymmetric Black Holes in AdS5 as

Giant Gravitons

Let us set j2 = 0 or a = b in (3.22). We then expand the resulting expression for

low values of a.

E

N2
∼ 3a ∼ 3

q

N2

j1

N2
∼ 3a2

S

N2
∼ 2π

√
2a3/2.

(3.27)

In this limit, these small supersymmetric black holes are interesting for two rea-

sons. First, it is possible to count the entropy of these black holes using D-branes in

AdS. This is not the same problem as counting them in the field theory, but perhaps

these results might be a good hint for the kind of states that we should look at in the

field theory.

Second, in this limit, it turns out that on lifting these black holes to solutions of

10D supergravity, one may see that they have a near-horizon limit that looks very

much like a BTZ black hole in AdS3. While, this may seem to provide a justification

for the counting done above, it also leads to a puzzle that we will discuss below.
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3.3.1 D brane counting of the small black hole entropy

The limit we have taken above focussed on black holes with charges that are much

larger than N but much smaller than N2. In this regime, the supersymmetric sector

of the Hilbert space of the theory is presumably well described by probe D3 branes

moving about in the bulk.

The idea of this subsection is to count the number of such probe configurations

that could lead to states that, macroscopically, look like the small black hole desribed

above.

First, let us review the description of 1
8

BPS giant-gravitons in AdS5 × S5 that

was given by Mikhailov [41].

For this purpose, it is convenient to embed the S5 of the AdS5 in C3. We take an

arbitrary holomorphic 2-complex dimensional surface in C3 and we intersect it with∑
|zi|2 = 1. This gives a 3-real dimensional surface on S5. A D3 brane wrapping

this surface is what we call a ‘giant graviton’; such a configuration preserves 1
8

of the

bulk supersymmetries.

The black-holes above carry charge corresponding a particular U(1) ⊂ SU(4). Ge-

ometrically, this U(1) can be thought of as coming from a KK reduction of a particular

S1 in the S5. Translations along this S1 correspond to simultaneous rotations of the

zi above by a phase: zi → eiαzi (where α is some phase). For the giant graviton to

have finite charge under this U(1), it must wrap this S1 an integral number of times.

Now, geometrically, wrapping the S1 means that the ‘giant graviton’ configuration is

invariant under shifts along the S1.

The configurations that have this property are those where the holomorphic sur-
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face in C3 is invariant under simultaneous rotations of the zi above. The most general

such surface is given by the roots of a homogeneous polynomial of degree n:

∑
n1+n2+n3=n

Cn1,n2,n3z
n1
1 zn2

2 zn3
3 = 0 (3.28)

It is easy to see that this 2-surface intersects the sphere |zi|2 n-times. So, a giant

graviton that is wrapped on this 2-surface has energy nN , and also U(1) charge nN .

Notice, that in general there are n(n−1)
2
∼ n2 distinct complex coefficients that specify

the polynomial above.

Now, we think of a configuration where the coefficients Cn1,n2,n3 vary slowly as

a function of the common angle z1, z2, z3. We can think of this as a ‘left-moving’

fluctuation in the sigma model on the space of all possible coefficients Cn1,n2,n3 . The

central charge of this sigma model is n2+n2

2
= 3n2

2
(each complex coefficient has central

charge 2 and its superpartner has central charge 1). Apart from its ‘rest energy’, the

giant graviton now has some additional energy, say p, that comes from this variation.

The number of configurations with energy p is given by Cardy’s formula as

Nconfig = e2π

q
3n2p

12 (3.29)

The total energy however is Etotal = nN + p.

Now, there is a family of sigma models, each parameterized by a particular value

of n. We can consider all of these in a grand canonical partition function. The entropy

is dominated by that value of n that gives the largest number in (3.29) above. This

is obtained by maximizing Nconfig subject to the constraint that the total energy be
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a constant. This maximization is easily done. We find that, at the maximum

n =
2Etotal

3N
, p =

Etotal

3

Nconfig = e2π
Etotal

3

3
2

(3.30)

Comparing with (3.27), we see that the entropy is almost correct but off by a

factor of 2. However, our insight that these black holes can be realized as states in

a 1 + 1 sigma model is important; in fact, in the next subsection, we will find that,

indeed, in the near-horizon limit the geometry of these black holes looks like a BTZ

black hole in AdS3.

3.4 Near Horizon Geometry of Supersymmetric

Black Holes in AdS5

In this subsection we will investigate the near-horizon geometry of supersymmetric

black holes in AdS5. This subsection is based on work done in [36]. The near-horizon

geometry of extremal black holes in AdS5 was also explored in [42].

We will find that, in fact, in this limit the geometry begins to looks like AdS3.

This provides a justification for the sigma model that we constructed to explain black

holes in the previous section; however, as we shall see, some puzzles remain.

Once again we focus on the limit (3.27). These small black holes are parameterized

by a single parameter. Here, we will find it convenient to take that parameter to be

R0 which is consistent with the notation of [32]. In this subsection, we will also restore

factors of the AdS radius `. In terms of these parameter, the charge and energy of

this black hole are given by the following formulae.
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q =
π`R 2

0

4G5

(
1 +

R 2
0

2`2

)
, j1 =

3πR 4
0

8G5`

(
1 +

2R 2
0

3`2

)
, (3.31)

where G5 is the 5 dimensional Newton constant, related to the type IIB one by

1

G5

=
vol(S5)

G10

=
π3`5

G10

. (3.32)

The Energy of the black hole is given as

E =
3πR 2

0

4G5

(
1 +

3R 2
0

2`2
+

2R 4
0

3`4

)
. (3.33)

The above mass and charges satisfy the BPS relation

E =
3q + 2j1

`
(3.34)

The full solution is given by the following 5 dimensional metric and gauge field

(see the section 3.2 of [33], whose simplified version for equal charges is presented

here):

ds 2
5 = −f 2dt2 − 2f 2ωdtσ3 + f−1g−1dR2

+
R2

4

(
f−1(σ 2

1 + σ 2
2 ) + f 2hσ 2

3

)
(3.35)

A ≡ A1 = A2 = A3 = fdt+ σ3

(
R2 + 2R 2

0

2`
+ fω

)
(3.36)

where

f =

(
1 +

R 2
0

R2

)−1

, ω = − 1

2`

(
R2 + 3R 2

0 +
3R 4

0

2R2

)
,

g = 1 +
3R 2

0

`2
+
R2

`2
,

h ≡ f−3g − 4

R2
ω2

= 1 +
3R 2

0

R2
+
R 4

0

R4

(
3 +

R 2
0

`2

)
+
R 6

0

R6

(
1 +

3R 2
0

`2
− 9R 2

0

4`2

)
(3.37)
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and ` is the radius of AdS5 at asymptotic infinity (R→∞). The horizon is at R = 0.

σi (i = 1, 2, 3) are the right-invariant 1-forms, i.e., invariant under the SU(2)R of

SO(4) = SU(2)L × SU(2)R. In terms of the Hopf coordinates (θ, φ;ψ), these one-

forms are:

σ3 = dψ + cos θdφ

σ1 = sinψdθ − cosψ sin θdφ (3.38)

σ2 = cosψdθ + sinψ sin θdφ .

Note that the above time coordinate t, we have used above, is not associated with

the energy but rather with the isometry generated by ∼ ε̄γµε, where ε is the Killing

denotes the Killing spinor preserved by the geometry.

3.4.1 Uplifting the Solution

The uplift ansatz for the above 5 dimensional supergravity solutions to type IIB

supergravity can be found in the section 2.1 of [43]. In general, if all Q1, Q2 and

Q3 are different, the uplifted solution has U(1)3 ⊂ SO(6) isometry. The former

is generated by the Cartan elements of SO(6). When all three charges are equal

(Q1 = Q2 = Q3), one may consider the solution with A1 = A2 = A3, which is the

one presented in the previous section. Then the uplifted solution would preserve the

U(1)× SU(3) ⊂ SO(6) isometry of S5. This is similar to the fact that one can take

the solution to have U(1)L × SU(2)R ⊂ SO(4) isometry for J1 = J2 case.
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The notation of [43] is related to ours as follows.

g of [43] → 1

`
,

Ai of [43] → AI ,

Xi of [43] → XI of [33] ,

where i = 1, 2, 3, I = 1, 2, 3, and in our case (Q1 = Q2 = Q3) all scalars are constant

XI = 1.

Here we consider the uplifted metric, which is basically eqn.(2.1) (and eqn.(2.7))

of [43] with Xi = 1 (i = 1, 2, 3). For A1 = A2 = A3 ≡ A case, it is natural to take

advantage of the Hopf-fibration of S5: a circle fibration over a CP 2 base. The U(3)

isometry mentioned above comes from that of CP 2. The ten dimensional metric is

given as

ds 2
10 = ds 2

5 + `2

(
ds2

CP 2 + (dΨ + V +
1

`
A)2

)
≡ ds 2

5 + `2

(
ds2

CP 2 + (Σ +
1

`
A)2

)
,

(3.39)

where ds 2
5 and A are given by (3.35) and (3.36), respectively. Ψ is an angle with

period Ψ ∼ Ψ + 2π. The CP 2 metric and V are the standard Fubini-Study ones. For

instance, the metric is

ds 2
CP 2 =

dzadz̄a

1 + z̄bzb
− (z̄adza)(zbdz̄b)

1 + z̄czc
= dzadz̄b ∂a∂̄b log(1 + z̄czc) (3.40)

where the summation over a, b, c = 1, 2 is assumed. The volume of CP 2 associated

with this metric is given as vol(CP 2) = π2

2
. The 1-form V , in a suitable gauge, is

given as

V = − i
2

z̄adza

1 + z̄bzb
+ c.c. (3.41)
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Inserting the expressions (3.35) and (3.36) and expanding, one obtains

ds 2
10 = −f 2dt2 − 2f 2ωdtσ3 + f−1g−1dR2 +

R2

4

(
f−1(σ 2

1 + σ 2
2 ) + f 2hσ 2

3

)
+2`Σ

(
fdt+ σ3

(
R2 + 2R 2

0

2`
+ fω

))
+

(
fdt+ σ3

(
R2 + 2R 2

0

2`
+ fω

))2

+`2Σ2 + `2ds 2
CP 2

= 2fdt

(
`Σ + σ3

(
R2 + 2R 2

0

2`

))
+ `2Σ2 + 2` Σσ3

(
R2 + 2R 2

0

2`
+ fω

)
+σ 2

3

(
R2

4
f−1g + 2fω

(
R2 + 2R 2

0

2`

)
+

(
R2 + 2R 2

0

2`

)2
)

+f−1g−1dR2 + `2ds 2
CP 2 +

R2

4
f−1(σ 2

1 + σ 2
2 ) , (3.42)

which we rearrange as

ds 2
10 = 2

(
1 +

R 2
0

R2

)−1

dt

(
`Σ + σ3

(
R2 + 2R 2

0

2`

))
+α(R)

(
`Σ + σ3

(
R2 + 2R 2

0

2`

))2

+ β(R)
(
`Σ + γ(R)σ3

)2

(3.43)

+
`2(R 2

0 +R2)

`2 + 3R 2
0 +R2

dR2

R2
+ `2ds 2

CP 2 +
R 2

0 +R2

4

(
σ 2

1 + σ 2
2

)
where

α(R) = 1− β(R)

β(R) =
4

R2
f 3g−1ω2 =

(3
2
R 4

0 + 3R 2
0 R

2 +R4)2

(R 2
0 +R2)3(`2 + 3R 2

0 +R2)
(3.44)

γ(R) =
R2 + 2R 2

0

2`
+
R2

4
f−2gω−1 = −`

R 4
0 −

R 4
0

2`2
R2 +R4

(
1− 3R 2

0

`2

)
3R 4

0 + 6R 2
0 R

2 + 2R4
.

The rearranged form (3.43) will be useful when we take the near-horizon limit.

The near-horizon limit R2 → εR2 and t→ t
ε

with ε→ 0. In this limit we have

α(R)→
`2 + 3

4
R 2

0

`2 + 3R 2
0

, β(R)→
9
4
R 2

0

`2 + 3R 2
0

, γ(R)→ − `
3
. (3.45)
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The metric in this limit is

ds 2
10 → 2

R2

R 2
0

dt

(
`Σ +

R 2
0

`
σ3

)
+
`2 + 3

4
R 2

0

`2 + 3R 2
0

(
`Σ +

R 2
0

`
σ3

)2

+
`2R 2

0

`2 + 3R 2
0

dR2

R2

+`2ds 2
CP 2 +

R 2
0

4

(
σ 2

1 + σ 2
2

)
+

9
4
R 2

0

`2 + 3R 2
0

(
`Σ− `

3
σ3

)2

. (3.46)

Note that the angle appearing in the last term ∝ (3Σ− σ3)2 is

φ1 + φ2 + φ3 − ϕ1 − ϕ2 , (3.47)

where the five angles are conjugate to the charges Q1, Q2, Q3, J1 and J2, respectively.

Let us define r ≡ R2

R 2
0

.

3.4.2 Parameters and Charges

The metric (3.46) is that of a near extremal BTZ black hole fibred over a base.

We will first try to understand the base; to that end we will permit ourselves a small

digression.

S3 and S5 as Hopf Fibrations

Consider the S3 × S5 that lies inside AdS5 × S5. The S3/S5 may respectively be

thought of as Hopff fibrations over S2 and CP 2 respectively. Concretely we have

ds2
3 = ds2

2 + (dψ + cos θdφ)2 (3.48)

ds2
5 = dsCP 2 + (dΨ + V )2 (3.49)

(3.50)

where cos θdφ and V respectively are, respectively, the Fubini Study one forms on

CP 1 and CP 2 respectively, and ψ and Ψ are each phases of periodicity 2π each.
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We work this out in detail for S3. Let z1 = cos θ/2eiα1 and z2 = sin θ/2eiα2

on C2. Clearly θ varies from 0 − π while ?αi vary from 0 − 2π. The base S2 is

parameterized by θ and φ = α1−α2. We choose ψ = α1 + α2 as our fibre coordinate.

The identifications (ψ, χ) ∼ (ψ + 4π, φ) and (ψ, χ) ∼ (ψ + 2π, φ + 2π) generate

the lattice of αi identifications. Here ψ represents the fibre (note that one of the

identifications make the fiber coordinate periodic in a manner that makes no reference

to the base point - this is a consistency check for the interpretation as a fibration with

our choice of base). 6

Upon working out the metric in these new coordinates we find

ds2 =
1

4

[(
dθ2 + sin2 θdφ2

)
+ (dψ + cos θdφ)2] (3.51)

We conclude that unit radius S3 may be written as a 2π valued fibration over a radius

half 2 sphere (though the range of the coordinate ψ is 4π, the length of the circle it

parameterizes is 2π.

In the same way we may embed S5 inside C3. Let zi = rie
iβi . The coordinate

Ψ may be chosen to be β1+β2+β3

3
; with this choice Ψ has periodicity 2π. Setting

β1 = β2 = β3 ensures we move along the fiber; clearly the length of the corresponding

circle, in the metric dzidz̄i is 2π. All points along the (1, 1, 1) vector (in βi space)

map to the same base point as the base is CP 2.

Finally let us compute the volumes of the bases obtained via this procedure. We

have ωd−1 = 2π
d
2

Γ( d
2

)
; note in particular that ω1 = 2π, ω2 = 4π, ω3 = 2π2, ω4 = 8

3
π2,

ω5 = π3. We find that the volume of the base S2 is 2π2/2π = π, which is the correct

6The precise nature of the coordinate ψ along the fibre is not important - one could add any
function of the base to it, at the price of modifying the one form that apperas in (3.46).



Chapter 3: Supersymmetric Partition Functions in AdS5/CFT4 63

volume for a radius 1/2 2 sphere. On the other hand the volume of CP 2 base is π2/2.

The volume of the base

The base in the metric (3.46) is

`2ds 2
CP 2 +

R 2
0

4

(
σ 2

1 + σ 2
2

)
+

9
4
R 2

0

`2 + 3R 2
0

(
`Σ− `

3
σ3

)2

where Σ ∼ Ψ and σ3 ∼ ψ. We will now compute the periodicities of the base

coordinate 3Σ− σ3 and the fiber coordinate Σ +
R2

0

l2
σ3.

In the space (Σ, σ3/2) we may choose the identification lattice vectors as (2, 3)

and (m, k) where 2k − 3m = 1. The first vector is chosen to be constant along the

base, and the second vector then completes the unit cell. The periodicity of the

base coordinate is then (3m − 2k)2π while the periodicity of the fibre coordinate is

(4π)(1 + 3
R2

0

l2
).

It follows that the volume of the base is l4π2/2 × R2
0π × R0π ×

√
1 + 3

R2
0

l2
=

l4R3
0π

4

2
×
√

1 + 3
R2

0

l2
.

The Central Charge

In (3.46) we have l3 = R0r
1+3

R2
0
l2

It follows that

l3V7 =
l4R4π4

2
(3.52)

In conventions in which the action takes the form L = 1
16πG3

√
gR + . . . the AdS3

central charge is c = 3l3
2G3

. Using the same conventions for the 10 dimensional action

we find c = 3l3V7

2G10
or
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c =
3π4

4

R4
0l

4

G10

=
3

2

R4
0

l4
× πl3

2G5

(3.53)

We now use the relation

2G5

l3π
= 1/N2 (3.54)

to find

c = 6N2

(
R2

0

2l2

)2

(3.55)

Using

q

N2
=
R2

0

2l2
(1 +

R2
0

2l2
) (3.56)

the central charge is easily expressed as a function of q; in the limit of small charge

we find.

c ≈ 6q2

N2
(3.57)

The BTZ Mass

The non dimensionalized mass or angular momentum of the extremal BTZ black

hole is given by

L0 =
R2

0

4G3l3
(3.58)

Using

r2
0 = 4l2 ×

1 + 3
4

R2
0

l2

1 + 3
R2

0

l2

(3.59)

l3 =
R0√

1 + 3
R2

0

l2

(3.60)

G3 =
G5π

3l5l3
V7l3

(3.61)
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together with (3.52) we find

L0 = 2
R2

0

2l2
× πl3

2G5

× (1 +
3

4

R2
0

l2
) = 2N2R

2
0

2l2
× (1 +

3

4

R2
0

l2
) ≈ 2N2 q

N2
= 2q (3.62)

where the approximation works in the limit of small charge.

Entropy

The entropy that follows from Cardy’s formula is

S = 2π

√
cL0

6
(3.63)

= 2πN

√
2

(
R2

0

2l2

)3(
1 +

3

4

R2
0

l2

)
(3.64)

≈ 2
√

2π
q

3
2

N
(3.65)

(3.66)

where, once again, the approximation is accurate in the limit of small charges. The

entropy in (3.63) is in precise agreement with the formulas of Gutowski and Reall.

3.4.3 Discussion

In the previous two sections we have presented two derivations of the entropy

of small black holes in AdS5. The first discussion above, in section (3.3), led us to

believe that small black holes in AdS5 should be describable by a 1 + 1 sigma model.

In section (3.4), we verified that in the near-horizon, these black holes did look like

AdS3 fibered on a base. This suggests that when if we look at excitations that are

‘near’ the states corresponding to 1
16

small black holes, the theory of these excitations
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is describable by a 1 + 1 dimensional CFT. This would be like ‘AdS/CFT within

AdS/CFT’!

However, there are puzzles and details to be cleared up in this picture. First,

one needs to understand whether the sigma model description in section (3.3) is

justified. While counting the entropy of D1-D5 black holes, we work in a limit where

the compact manifold is much smaller than the circle on which the CFT is defined.

This is evidently not the case in the sigma model that we presented; the CP 2 is

the same size as the S1 on which the CFT is defined. This may account for the

discrepancy between (3.30) and (3.27). Second, in section (3.4), the AdS3 geometry

that we found is fibered on a base. This makes the question of dimensional reduction

somewhat tricky.

Finally, it would be interesting if one could find an explicit operator counting of

these small black holes. The two discussions we have presented above may be helpful

in this regard.

3.5 Partition Functions over 1
2,

1
4

th
and 1

8

th
BPS

States

In this section we will study the partition function over 1
8

th
, a quarter and half

BPS supersymmetric states in N = 4 Yang Mills. We will compute these partition

functions in free Yang Mills, at weak coupling using naive classical formulas, and

at strong coupling using the AdS/CFT correspondence. In the case of quarter and

1
8

th
BPS states, our free and weak coupling partition functions are discontinuously
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different. However the weak coupling and strong coupling partition functions agree

with each other (see [44] for an explanation).

It is possible that something similar will turn out to be true for the 1
16

th
cohomology

(see [2] for a possible mechanism). This makes the enumeration of the weakly coupled

Q cohomology an important problem. We hope to return to this problem in the near

future.

3.5.1 Enumeration of 1
8
th

, quarter and half BPS Cohomology

In this subsection we will enumerate operators in the anti-chiral ring, i.e. operators

that are annihilated by Qα1, with α = ±1
2
, and their Hermitian conjugates (these are

the charges we called Q and Q′ in previous sections 7). All such states have ∆ = 0

and j1 = 0. It is not possible to isolate the contribution of these states to IYM (note

the Index lacks a chemical potential that couples to j1); nonetheless we will be able

to use dynamical information to count these states below.

This enumeration is easily performed in the free theory. Only the letters X, Y , Z,

ψ0,±,+++ (see Table 2.2) and no derivatives contribute in this limit. We will denote

these letters by Φ̄i (i = 1 . . . 3) and W̄α̇ (α̇ = ±) below. Note that these letters all

have j1 = 0 and E = q1 + q2 + q3. The partition function

Zcr−free = Tr exp

[∑
i

µiqi + 2ζj2

]
(3.67)

is given by the expression on the RHS of (3.2) with

fB =
3∑
i=1

eµi , fF = 2 cosh ζe
µ1+µ2+µ3

2 . (3.68)

7If we had chosen states annihilated by Q̄α̇1 we would have obtained the chiral ring.
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Note that 1 − fB − fF is positive at small µi but negative at large µi. We conclude

that the partition function (3.67) undergoes the phase transition described in [3, 4]

at finite values of the chemical potentials, and that its logarithm evaluates to an

expression of order N2 at small µi.

We now turn to the weakly interacting theory. As explained in [37, 44], at any

nonzero coupling no matter how small, the set of supersymmetric operators is given

by all gauge invariant anti-chiral fields Φ̄i, W̄α̇ modulo relations [Φ̄i, Φ̄j] = [Φ̄i, W̄α̇] =

0 and {W̄α̇, W̄β̇} = 0 (the first of these follows from ∂Φ̄iW̄ = 0 where W̄ is the

superpotential). In general there can be corrections to these relations (see [44] ).

We assume that such corrections do not change the number of elements in the ring.

In fact, if we go to the Coulomb branch of N = 4 we get a U(1)N theory with no

corrections at the level of the two derivative action. The chiral primary operators at

a generic point of this moduli space are the same as all the operators that we are

going to count.

It is now easy to enumerate the states in the chiral ring. The relations in the

previous paragraph ensure that all the basic letters commute or anticommute, and so

may be simultaneously diagonalized, so we must enumerate all distinct polynomials of

traces of diagonal letters. This is the same thing as enumerating all polynomials of the

3N bosonic and 2N fermionic eigenvalues that are invariant under the permutation

group SN . We may now formally substitute the eigenvalues φ̄fi and W̄ f
α̇ (f = 1 . . . N)

with bosonic and fermionic creation operators afi and wfα̇; upon acting on the vacuum

these produce states in the Hilbert space of N particles, each of which propagates in

the potential of a 3 dimensional bosonic and a 2 dimensional fermionic oscillator. The



Chapter 3: Supersymmetric Partition Functions in AdS5/CFT4 69

permutation symmetry ensures that the particles are identical bosons or fermions de-

pending on how many fermionic oscillators are excited. As a consequence we conclude

that the cohomological partition function is given by the coefficient of pN in

Z1/8(p, γ1, γ2, γ3, ζ) =
∞∑
N=0

pNZN(γ1, γ2, γ3, ζ)

=
∞∏

n,m,r=0

∏
s=±1(1 + p esζe−(2n+1)γ1−(2m+1)γ2−(2r+1)γ3)

(1− p e−n2γ1−m2γ2−r2γ3)(1− p e−(2n+2)γ1−(2m+2)γ2−(2m+2)γ3)

(3.69)

Further discussion on these 1/8 BPS states can be found in [38] .

We may now, specialize both the free and the interacting cohomologies listed

above to 1
4

th
BPS cohomology by taking the limit γ3 → ∞. The only letters that

contribute in this limit are Φ̄1 and Φ̄2 (X, Y of Table 2.2). The final result for the

interacting cohomology may be written as

Z1/4(p, γ1, γ2) =
∞∑
N=0

pNZN(γ1, γ2) =
1∏∞

n,m=0(1− p e−n2γ1−m2γ2)
(3.70)

For a more explicit construction of 1/4 BPS operators see [45] and references therein.

It is instructive to compare the γ3 → ∞ limit (3.70) of (3.69) to the same limit

of the partition function over Q cohomology of the previous section that also sim-

plifies dramatically in this limit.The only letters that contribute in this limit are

X, Y,Ψ+,++− (where the Indices refer to j1, q1, q2, q3 charges). Further, it is easy to

verify that QΨ+,++− ∝ [X, Y ]. As a consequence the matrices X and Y should

commute and may be diagonalized; furthermore the matrix ψ must also be diagonal

(so that Q anihilates it). The cohomology in this limit is thus given by the parti-

tion function of N particles in a 2 bosonic and one fermionic dimensional harmonic
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oscillator.

Z =
∑
N

pNTr[y2J1e−γiLi ] =
∏
n,m≥0

(1 + pye−2(n+1)γ1−2(m+1)γ2)

(1− pe−2nγ1−2mγ2)
(3.71)

The Index IWL over this cohomology is then computed by setting y = −1. At this

special value, terms in the numerator with values m,n cancel against terms in the

denominator with m+ 1, n+ 1 leaving only

IWL
YM =

∑
N

IWL
YM (N) =

∑
N

pNTrN [(−1)F e−γiLi ]

=
1

(1− p)
∏∞

n=1(1− pe−n2γ1)(1− pe−n2γ2)

(3.72)

This is an exact formula for the γ3 →∞ limit of the Index IWL
YM . Multiplying it with

(1− p) and setting p to unity, we recover the large N result (2.43) (at γ3 =∞).

It is also possible to further specialize (3.70) to the half BPS cohomology (of

states annihilated by supercharges with q1 = 1
2
) by taking the further limit γ2 → ∞

to obtain

Z1/2(p, γ1) =
∞∑
N=0

pNZN(γ1) =
1∏∞

n=0(1− p e−n2γ1)
(3.73)

Note that the free half BPS cohomology, interacting half BPS cohomology and

the γ2, γ3 → ∞ limit of IWL
YM all coincide. On the other hand the free quarter BPS

cohomology sees many more states than the interacting quarter BPS cohomology

which, in turn, sees a larger effective number of states than the γ3 → ∞ limit of

the Index. The last quantity, the Index, receives contributions from Φ̄1, Φ̄2 and

ψ+,0;++−, which are all the states in Table 2.2 which have L3 = 0. This Index sees

a smaller number of states as a consequence of cancellations involving the presence

of the fermion ψ+,0;++−. Again, the 1
8

th
BPS free cohomology sees more states than

the interacting cohomology, which in turn sees more states than the Index, with no
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restrictions on chemical potentials. More explicitly, we can see that for very large

charges, or very small chemical potentials the entropy of (3.73) is that of N harmonic

oscillators, which correspond basically to the eigenvalues. Similarly, (3.70), and (3.69)

give the entropy of 2N and 3N harmonic oscillators respectively. All these entropies

are basically linear in N in the large N limit. The intuitive reason is that the matrices

commute, and so do not taking advantage of the full non-abelian structure of the

theory.

3.5.2 Large N limits and Phase Transitions

In this subsection we will study the large N limit of the partition functions (3.69),

(3.70), (3.73). We will first briefly consider the limit N → ∞ at fixed values of the

chemical potentials, and show that in this limit these partition functions reproduce

the supergravity answers (3.15) . We will then turn to large N limits in which the

chemical potentials scale with N . We find that the formulas for 1/4 and 1/8 BPS

states lead to large N phase transitions. This phase transition is the Bose-Einstein

condensation of the lowest mode, the ground state of the harmonic oscillators we had

in the previous subsection.

In the N →∞ and fixed chemical potential the partition functions (3.73), (3.70),

(3.69) , become independent of N . This limit is most easily evaluated by multiplying

the partition functions by (1 − p) 8 and setting p = 1. The entropy then grows as a

gas of massless particles in one, two and three dimensions respectively.

8This step cancels the divergent contribution of the ground state of the harmonic oscillator in
this limit. We will have a lot more to say about this below.
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For half BPS states we have [46]

Z1/2(γ1) =
1∏∞

n=0(1− e−n2γ1)
(3.74)

Clearly, in the large N limit, (3.74) may be thought of as the multiparticle partition

function for a system of bosons with

Z1/2−sp =
∞∑
n=1

e−2nγ1 =
1

1− e−2γ1
− 1; (3.75)

note that (3.75) is the same as the supergravity result (3.15) in the limits γ2 → ∞,

γ1 →∞. Similarly the large N limit of (3.70) is the multiparticle partition function

for a system of bosons whose single particle partition function is

Z1/4−sp =
∑
n,m

e−2nγ1−2mγ2 =
1

(1− e−2γ1)(1− e−2γ2)
− 1, (3.76)

which is the same as (3.15) in the limit γ3 → ∞. In a similar fashion, in the large

N limit of (3.69) is precisely the multiparticle partition function (3.16) – a system of

bosons and fermions whose single particle partition functions are given by (3.15).

We now turn to large N limits of these partition functions in which we will allow

the chemical potentials to scale with N . Let us start with the 1/2 BPS case, and set

γ1 = γ. This case does not have a phase transition. We write

logZ(γ, p) = −
∑
n

log(1− p e−2nγ) ∼ − 1

2γ

∫ ∞
0

dx log(1− p e−x) (3.77)

We can first solve for p by writing

N = p ∂p logZ =
1

2γ

∫ ∞
0

dx
p e−x

1− p e−x
= − 1

2γ
log(1− p) (3.78)

We can now write β̃ ≡ N2γ. Then (3.78) is independent of N and it has a solution

for all values of β̃ . We can then write the partition function as

logZN(γ) = N

{
1

β̃

∫ ∞
0

dx log[1− (1− e−β̃)e−x]− log(1− e−β̃)

}
(3.79)
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We see that this formula is of order N . There is no transition as a function of

β̃. For large values of β̃ � 1, it turns out that (3.79) is independent of N when

expressed in terms of γ. This can be most easily seen by setting p = 1 in (3.77) .

As expected the change in behavior happens at a temperature (2γ)−1 ∼ N which is

when the trace relations start being important. For very small β̃ we find that (3.79)

becomes logZN ∼ N [− log β̃ + 1], which captures the large temperature behavior of

N harmonic oscillators plus an 1/N ! statistical factor.

Let us now consider 1/4 BPS states. Let us set γ1 = γ2 = γ. For sufficiently large

temperatures we approximate the partition function as

logZ(β, p) =
∑
n1,n2

− log(1− pe−(n1+n2)2γ) ∼ 1

(2γ)2

∫ ∞
0

dxx[− log(1− pe−x)] (3.80)

Now we find a new feature when we compute

N =
1

(2γ)2

∫
dxx

pe−x

1− pe−x
=

1

(2γ)2
Pl[2, p] (3.81)

where Pl[2, p] is the PolyLog function. Now we see that for the lowest value of the

chemical potential, p = 1, we get

Nmax =
1

(2γ)2

π2

6
(3.82)

Defining β̃ ≡ 2γ
√
N we see that there is a critical temperature, β̃2

c = π2

6
, at which

there is a phase transition obtained by setting Nmax = N in (3.82) . At temperatures

smaller than this temperature we have a Bose-Einstein condensation of the ground

state of the harmonic oscillator. In this regime the free energy ZN(β) is given by

(3.80) with p = 1. For higher temperatures we are supposed to solve for p using

(3.81) and then insert it in (3.80) to compute the free energy. We get

logZN(β̃′) = N

{
1

β̃2

∫ ∞
0

dxx[− log(1− p(β̃)e−x)]− log p(β̃)

}
(3.83)
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where p(β̃) is the solution to (3.81) . Then for large temperatures we have logZN ∼

N [− log β̃2 + 1] which captures the entropy of N 2-dimensional harmonic oscillators

plus the 1/N ! statistical factor. It is possible to see that at β̃c we have a second order

phase transition.

One can find similar results for the 1/8 BPS states. We set γi = γ. In this case

the rescaled temperature is given by β̃′ = 2γN1/3. The results are similar. For low

temperatures the answer is independent of N and for high temperatures we have

a free energy which is linear in N and is a function of the rescaled temperature

β̃′. Again there is a second order phase transition corresponding to the Bose-Einstein

condensation of ground state of the harmonic oscillator. If we think of these harmonic

oscillators as arising from D3 branes wrapping the S3, then we could think of this

condensation as responsible for the fact that the S3 is contractible, in the spirit of

the transition in [47]. It would be nice to see if this can be made more precise.

3.6 Comparing the Cohomological Partition Func-

tion and the Index

Let the number of states with charges J1, J2, Li be given by eS(J1,J2,Li). Then

Zfree =
∑

J1,J2,Li

exp

[
S(J1, J2, Li)−

∑
i

γiLi − 2ζJ2

]

IWL
YM =

∑
J1,J2,Li

exp

[
S(J1, J2, Li)−

∑
i

γiLi − 2ζJ2

]
(−1)2(J1+J2)

(3.84)



Chapter 3: Supersymmetric Partition Functions in AdS5/CFT4 75

where we have set all chemical potentials that couple to charges outside SU(2, 1|3)

to zero in Zfree. Let

exp
[
N2Seff(j̃1, γi)

]
=
∑
J2,Li

exp

[
S(J1, J2, Li)−

∑
i

γiLi − 2ζJ2

]
. (3.85)

where j̃1 ≡ J1/N
2 � 1 and γi � 1. Let us assume that Seff is independent of N in

the large N limit. We certainly have this property in the free theory, and we expect

it in the interacting N = 4 theory, but it does not have to hold for every theory. We

can then rewrite (3.84) as

Zfree =
∑
J1

exp
[
N2Seff(j̃1, ζ, γi)

]
IWL
YM =

∑
J1

exp
[
N2
{
Seff(j̃1, ζ + πi, γi) + 2iπj̃1

}] (3.86)

Let us assume that that at fixed values of ζ, γi has a maximum at j̃ = a(θ, γi) and

that

Seff(a+ δ, ζ, γi) ≈ S0 − 2b2δ2

S0 = Seff(a, ζ, γi).

(3.87)

The contribution of this saddle point to the partition function in the first line of

(3.86) is easily estimated9 by

Zfree ≈
√

2π

b2N2
exp

[
N2S0

]
. (3.88)

An estimation of the Index in the second line of (3.86) is a more delicate task

as the summand changes by large values over integer spacings. To proceed we will

9For instance one could convert the sum into an integral using the Euler McLaurin formula [48]
and approximate the integral using saddle points. A more careful estimate may be obtained by
Poisson resumming, see the next paragraph.
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assume that Seff(j1, ζ, γi) is a continuous function; i.e. that it does not evaluate to

discontinuously different answers for integral and half integral values of J1. This is

a nontrivial assumption, which we believe to be true for free Yang Mills theory, but

will not always be true in every theory. Under this assumption we will now estimate

the contribution of the saddle point at j̃1 = a to the Index by

IWL
YM = eN

2S0

∞∑
m=−∞

exp

[
−b

2m2

2N2
+ πim

]

= eN
2S0

∞∑
k=−∞

√
2π

b2N2
exp

[
N2(2π)2

2b2
(k − 1

2
)2

]

≈ 2

√
2π

b2N2
exp

[
N2(S0 −

π2

2b2
)

]
(3.89)

where we have used the Poisson resummation formula to go from the first to the

second line of (3.89).

Note that the contribution of the saddle point at j̃1 = a to the Index is supressed

compared to its contribution to the partition function. Moreover, if S0 < π2/2b2, the

contribution of this saddle point is formally of order e−aN
2
; which means that the

neighborhood of the saddle point does not contribute significantly to the Index in

the large N limit; the Index receives its dominant contributions from other regions of

the summation domain. An estimation from formulas of (3.6), (3.9) puts us in this

regime

As a toy example of the suppression described in the last two paragraphs, consider

the two identities

Z = (2 + 1)N =
∑
k

2k
N !

k!(N − k)!

I = (2− 1)N =
∑
k

2k
N !

k!(N − k)!
(−1)N−k.

(3.90)
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The summation over k in the first of (3.90) may be approximated by the integral∫ 1

x=0

e
N ln 2x

xx(1−x)1−x , (3.91)

which localizes around the saddle point value xs = 2
3

at large N , yielding Z = 3N .

The contribution to I from this saddle point, on the other hand, is proportional to

eN(ln 3−π
2

3
), and so is utterly negligible, consistent with the fact that I evaluates to

unity. 10

3.7 Discussion

This chapter is based on the second half of the paper [14]. Some progress has

been made in calculating supersymmetric partition functions in AdS/CFT after the

appearance of this paper.

First, the conjecture made here for the exact 1
N
, 1

8
BPS partition function was

verified in [49]. The authors of this paper considered 1
8

BPS giant gravitons in AdS5

and showed that by exactly quantizing this moduli space, they could reproduce the

partition function (3.69). This work itself was followed up by other papers that used

similar geometric quantization techniques to obtain exact results for the chiral ring

in theories with Sasaki-Einstein duals [50, 51].

Then, the conjecture made here for exact 1
16

BPS partition function in the strong

coupling infinite N limit was verified in [52]. The authors of this paper used recently

10Actually, a computation very similar to this toy example explains why the Index grows more
slowly that exponentially with energy in the ‘low temperature phase’ (while the cohomological
partition function displays exponential growth in the same phase). The number of states that
contribute at energy E to the Index is given by the coefficient of xE in (2.43). This is given by a
multinomial expansion. When we weight the sum with (−1)F , the multinomial sum stops growing
exponentially just like (3.90) above. Hence, the Index never goes through a Hagedorn like transition.
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developed ‘integrability’ techniques to obtain a partition function that agreed with

(3.13).

Finally, since the appearance of this work there have been several attempts to

calculate the exact entropy of 1
16

BPS black holes in AdS5 [53, 54]. However, this

problem remains an important unsolved problem. Apart from the problem of counting

the entropy, one would also like to explain why supersymmetric 1
16

black holes in AdS5

have only 4 parameters and not 5. An explanation of this curious fact should go a

long way towards enhancing our understanding of the AdS/CFT duality.



Chapter 4

Indices for Superconformal Field

Theories in 3, 5 and 6 Dimensions

4.1 Introduction

In the previous two chapters, we have studied an Index for 4 dimensional su-

perconformal field theories. Such a construction may be easily generalized to field

theories in 3, 5, 6 dimensions. Superconformal algebras do not exist for d > 6. On

the other hand, in 2 dimensions, conformal symmetry is enhanced; the Index in this

case is rather famous and called the ‘elliptic genus’. We will study this Index in the

next 2 chapters.

Superconformal algebras in d = 3, 6 also arise in the worldvolume theory on

M2 and M5 branes respectively. In the simplest examples, these theories are dual

to M theory on AdS4 × S7 and AdS7 × S4 respectively. In this chapter we will

calculate our Index in supergravity on these backgrounds. The worldvolume theory

79



Chapter 4: Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions 80

for a large number of coincident M2 and M5 branes is not known; however, the Index

we calculate in this chapter should match with the Index for those theories, whatever

they are. This will serve as an important check on these theories, whenever they are

found.

In this chapter, we follow the pattern of Chapter 2. We perform a study of

superconformal algebras in d = 3, 5 and 6 and use our results to provide a complete

classification of all superconformal Indices in these dimensions. In each of these cases,

we also provide a trace formula that, when evaluated in a superconformal field theory,

may be used to extract all these superconformal Indices. This is the analogue of the

trace formula described in [2] for the Witten Index. Thus the Witten Index we define

in this chapter constitutes the most general superconformal Index in d = 3, 5, 6.

We then proceed to compute our superconformal Witten Index for specific super-

conformal field theories. We first perform this computation for the superconformal

field theories on the world volume of N M2 and N M5 branes, at N = 1 (using field

theory) and at N = ∞ (using the dual supergravity description). We find that our

Index has significant cancellations compared to the simple partition function over

supersymmetric states. In each case, the density of states in the Index grows slower

in comparison to the supersymmetric entropy. We also compute our Index for some

of the Chern Simons superconformal field theories recently analyzed by Gaiotto and

Yin [55]; and find that, in some cases, this Index undergoes a large N phase transition

as a function of chemical potentials.

This chapter is divided into 3 self-contained parts. Superconformal algebras in

d = 3 are analyzed in Section 4.2, in d = 6 are discussed in Section 4.3 and in d = 5
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are discussed in 4.4. In each section, we describe the relevant algebra and its unitary

representations. We then discuss short representations and enumerate all possible

ways in which short representations can pair up into long representations. We use

this enumeration to provide, in each dimension, an exhaustive list of all Indices that

are protected by group theory alone. We also provide a trace formula for a Witten

type Index that may be evaluated via a path integral. These Indices count states that

are annihilated by a particular supercharge. We discuss how the Witten Index may

be expanded out in characters of the subalgebra of the superconformal algebra that

commutes with this supercharge. The coefficients of these characters in the Witten

Index are nothing but the Indices mentioned above.

In d = 3, we evaluate our Index in three different theories: (a) Supergravity on

AdS4 × S7 (b) the worldvolume theory of a single M2 brane and (c) the Chern-

Simons matter theories recently discussed in [55]. In d = 6, we evaluate our Index in

supergravity on AdS7 × S4 and in the worldvolume theory of a single M5 brane.

4.2 d=3

4.2.1 The Superconformal Algebra and its Unitary Repre-

sentations

The bosonic subalgebra of the d = 3 superconformal algebra is SO(3, 2)× SO(n)

(the conformal algebra times the R symmetry algebra). The anticommuting gen-

erators in this algebra may be divided into the generators of supersymmetry (Q)

and the generators of superconformal symmetries (S). Supersymmetry generators
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transform in the vector representation of the R-symmetry group SO(n),1 have charge

half under dilatations (the SO(2) factor of the compact SO(3)× SO(2) ∈ SO(3, 2))

and are spinors under the SO(3) factor of the same decomposition. Superconformal

generators Sµi = (Qi
µ)† transform in the spinor representation of SO(3), have scaling

dimension (dilatation charge) (−1
2
), and also transform in the vector representation of

the R-symmetry group. In our notation for supersymmetry generators i is an SO(3)

spinor Index while µ is an R symmetry vector Index.

We pause to remind the reader of the structure of the commutation relations and

irreducible unitary representations of the d = 3 superconformal algebra (see [7] and

references therein ). As usual, the anticommutator between two supersymmetries is

proportional to momentum times an R symmetry delta function, and the anticom-

mutator between two superconformal generators is obtained by taking the Hermitian

conjugate of these relations. The most interesting relationship in the algebra is the

anticommutator between Q and S. Schematically

{Sµi , Qj
ν} ∼ δµνT

j
i − δ

j
iM

µ
ν

Here T ji are the U(2) ∼ SO(3)×SO(2) generators and Mµ
ν are the SO(n) generators.

Irreducible unitary lowest energy representations of this algebra possess a dis-

tinguished set of lowest energy states called primary states. Primary states have

the lowest value of ε0 – the eigenvalue of the dilatation (or energy) operator – of

all states in their representation. They transform in irreducible representation of

1In the literature on the worldvolume theory of the M2 brane, the supercharges are taken to
transform in a spinor of SO(8). This is consistent with the statement above, because for n = 8, the
vector and spinor representations are related by a triality flip and a change of basis takes one to the
other.
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SO(3) × SO(n), and are annihilated by all superconformal generators and special

conformal generators.2

Primary states are special because all other states in the unitary (always infinite

dimensional) representation may be obtained by acting on the primary with the gen-

erators of supersymmetry and momentum. For a primary with energy ε0, a state

obtained by the action of k different Q s on the primary has energy ε0 + k
2
, and is said

to be a state at the kth level in the representation. The energy, SO(3) highest weight

(denoted by j = 0, 1
2
, 1 . . .) and the R-symmetry highest weights (h1, h2 . . . h[n/2])

3 of

primary states form a complete set of labels for the entire representation in question.

Any irreducible representation of the superconformal algebra may be decomposed

into a finite number of distinct irreducible representations of the conformal algebra.

The latter are labeled by their own primary states, which have a definite lowest energy

and transform in a given irreducible representation of SO(3). The state content of

an irreducible representation of the superconformal algebra is completely specified by

the quantum numbers of its constituent conformal primaries.

As we have mentioned in the introduction, the superconformal algebra possesses

special short or BPS representations which we will now explore in more detail. Con-

sider a representation of the algebra, whose primary transforms in the spin j rep-

resentation of SO(3) and in the SO(n) representation labeled by highest weights

{hi} i = 1, · · · ,
[
n
2

]
. We normalize primary states to have unit norm. The supercon-

formal algebra – plus the Hermiticity relation (Qi
µ)† = Sµi – completely determines

2i.e. all generators of negative scaling dimension.

3hi are eigenvalues under rotations in orthogonal 2 planes in Rn. Thus, for instance, {hi} =
(1, 0, 0, ..0) in the vector representation
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the inner products between any two states in the representation. All states in an

unitary representation must have positive norm: however this requirement is not al-

gebraically automatic, and, in fact imposes a nontrivial restriction on the quantum

numbers of primary states. This restriction takes the form ε0 ≥ f(j, hi) as we will

now explain.4

Let us first consider descendant states, at level one, of a representation whose pri-

mary has SO(3) and SO(n) quantum numbers j, (h1 . . . h[n/2]). It is easy to compute

the norm of all such states by using the commutation relations of the algebra. As long

as j 6= 0 it turns out that the level one states with lowest norm transform in in the spin

j − 1
2

representation of the conformal group and in the (h1 + 1, {hi}) i = 2, · · · ,
[
n
2

]
representation of SO(n) [7]. The highest weight state in this representation may be

written explicitly as (see [12])

|Zn1〉 = A−1 |h.w〉 ≡
(
Q
− 1

2
1 −Q

1
2
1 J−

(
1

2Jz

))
|h.w〉 (4.1)

where J− denotes the spin lowering operator of SO(3) and Q
± 1

2
1 are supersymmetry

operators with j = ±1
2

and (h1, h2, . . . h[n/2]) = (1, 0, . . . , 0). Here |h.w〉 is a highest

weight state with energy ε0, SU(2) charge j and SO(n) charge (h1, h2, . . . , h[n/2]).

The norm of this state is easily computed and is given by,

〈Zn1|Zn1〉 =

(
1 +

1

2j

)
(ε0 − j − h1 − 1) (4.2)

It follows that the non negativity of norms of states at level one (and so the unitarity

of the representation) requires that the charges of the primary should satisfy

ε0 ≥ j + h1 + 1 (4.3)

4These techniques have been used in the investigation of unitarity bounds for conformal and
superconformal algebras in [5, 56, 10, 11, 7, 12].
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For j 6= 0 this inequality turns out to be the necessary and sufficient condition for a

representation to be unitary.

When the primary saturates the bound (4.3) the representation possess zero norm

states: however it turns out to be consistent to define a truncated representation by

simply deleting all zero norm states. This procedure yields a physically acceptable

representation whose quantum numbers saturate (4.3). This truncated representation

is unitary (has only positive norms) but has fewer states than the generic represen-

tation, and so is said to be ‘short’ or BPS.

The set of zero norm states we had to delete, in order to obtain the BPS representa-

tion described above, themselves transform in a representation of the superconformal

algebra. This representation is labeled by the primary state |Zn1〉 (see (4.1)).

Let us now turn to the special case j = 0. In this case |Zn1〉 is ill defined and

does not exist; no states with its quantum numbers occur at level one. The states of

lowest norm at level one transform in the spin half SO(3) representation, and have

SO(n) highest weights h′1 = h1 +1, {hi} i = 2, · · · , n
2
. The highest weight state in this

representation is |Zn2〉 = A+
1 |h.w.〉 ≡ Q

1
2
1 |h.w〉. The norm of this state is (ε0 − h1).

Unitarity thus imposes the constraint ε0 ≥ h1. However, in this case, this condition

is necessary but not sufficient to ensure unitarity, as we now explain.

As we have remarked above, the state |Zn1〉 = A−1 |h.w〉 is ill defined when j = 0.

However |s2〉 =
(
A+

1 A
−
1

)
|h.w〉 = Q

1
2
1Q
− 1

2
1 |h.w〉 is well defined even in this situation
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(when j = 0). The norm of this state is easily computed and is given by,5

〈s2|s2〉 = (ε0 + j − h1)(ε0 − j − h1 − 1). (4.4)

It follows that, at j = 0, the positivity of norm of all states requires either that

ε0 ≥ h1 + 1 or that ε0 = h1. This turns out to be the complete set of necessary

and sufficient conditions for the existence of unitary representations. Representations

with j = 0 and ε0 = h1 + 1 or ε0 = h1 are both short. The representation at ε0 = h1

is an isolated short representation since there is no representation in the energy gap

h1 ≤ ε0 ≤ (h1 + 1); its first zero norm state occurs at level one. The first zero norm

state in the j = 0 representation at ε0 = h1 + 1 occurs at level 2 and is given by |s2〉.

In summary, short representations occur when the highest weights of the primary

state satisfy one of the following conditions [7].

ε0 =j + h1 + 1 when j ≥ 0,

ε0 =h1 when j = 0.

(4.5)

The last condition gives an isolated short representation.

4.2.2 Null Vectors and Character Decomposition of a Long

Representation at the Unitarity Threshold

As we have explained in the previous subsection, short representations of the d = 3

superconformal algebra are of two sorts. The energy of a ‘regular’ short representation

is given by ε0 = j + h1 + 1. The null states of this representation transform in an

5When j 6= 0, the norm of |s2〉 had to be proportional to (ε0 − j − h1 − 1) simply because the
norm of |s2〉 must vanish whenever |Zn1〉 is of zero norm. The algebra that leads to this result is
correct even at j = 0 (i.e. when |Zn1〉 is ill defined).



Chapter 4: Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions 87

irreducible representation of the algebra. When j 6= 0 the highest weights of the

primary at the head of this null irreducible representation is given in terms of the

highest weights of the representation itself by ε′0 = ε0 + 1
2
, j′ = j − 1

2
, h′1 =

h1 + 1, h′i = hi. Note that ε′0 − j′ − h′1 − 1 = ε0 − j − h1 − 1 = 0, so that the null

states also transform in a regular short representation. As the union of the ordinary

and null states of such a short representation is identical to the state content of a

long representation at the edge of the unitarity bound, we conclude that

lim
δ→0

χ[j+h1 + 1 + δ, j, h1, hj] = χ[j+h1 + 1, j, h1, hj] +χ[j+h1 + 3/2, j− 1

2
, h1 + 1, hj]

(4.6)

where χ[ε0, j, hi] denotes the supercharacter of the irreducible representation with

energy ε0, SO(3) highest weight j and SO(n) highest weights {hi}. Note that the

χ s appearing on the RHS of (4.6) are the supercharacters corresponding to short

representations.

On the other hand when j = 0 the null states of the regular short representation

occur at level 2 and are labelled by a primary with highest weights ε′0 = ε0 + 1, j′ =

0, h′1 = h1 + 2, h′i = hi. Note in particular that j′ = 0 and ε′0−h′1 = ε0−h1− 1 = 0.

It follows that the null states of this representation transform in an isolated short

representation, and we conclude

lim
δ→0

χ[h1+1+δ, j = 0, h1, hj] = χ[h1+1, j = 0, h1, hj]+χ[h1+2, j = 0, h1+2, hj] (4.7)

Recall that isolated short representations are separated from all other representa-

tions with the same SO(3) and SO(n) quantum numbers by a gap in energy. As a

consequence it is not possible to ‘approach’ such representations with long represen-

tations; consequently we have no equivalent of (4.7) at energies equal to h1 + δ.
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For use below we define some notation. We will use c(j, hi) (with i = 1, 2, . . . , [n
2
])

to denote a regular short representation with SO(3) and SO(n) highest weights j, hi

respectively and ε0 = j+h1+1 (when j ≥ 0). We will also use the symbol c(−1
2
, h1, hj)

(with h1 ≥ h2 − 1) to denote the isolated short representation with SO(3) quantum

number 0, SO(n) quantum numbers h1 +1, hj (here j = 2, 3, . . . , [n
2
]) respectively and

ε0 = h1 + 1. The utility of this notation will become apparent below.

4.2.3 Indices

The state content of any unitary superconformal quantum field theory may be

decomposed into a sum of an (in general infinite number of) irreducible representa-

tions of the superconformal algebra. This state content is completely determined by

specifying the number of times any given representation occurs in this decomposi-

tion. Consider any linear combination of the multiplicities of short representations.

If this linear combination evaluates to zero on every collection of representations that

appears on the RHS of each of (4.6) and (4.7) (for all values of parameters), it is

said to be an Index. It follows from this definition that Indices are unaffected by

all possible pairing up of short representations into long representations, and so are

invariant under any deformation of superconformal Hilbert space under which the

spectrum evolves continuously. We now proceed to list these Indices.

1. The simplest Indices are simply given by the multiplicities of representations

in the spectrum that never appear on the RHS of (4.7) and (4.6) (for any

values of the quantum numbers of the long representations on the LHS of those

equations). All such representations are easy to list; they are SO(3) singlet
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isolated representations whose SO(n) quantum number h1 − |h2| ≤ 1 where h1

and h2 are both either integers or half integers, and h1 ≥ |h2| ≥ 0.

2. We can also construct Indices from linear combinations of the multiplicities of

representations that do appear on the RHS of (4.7) and (4.6). The complete

list of such linear combinations is given by

IM,{hj} =

M−|h2|∑
p=−1

(−1)p+1n{c(p
2
,M − p, hj}, (4.8)

where n[R] denotes the multiplicities of representations of type R and the Index

label M is the value of h1+2j for every regular short representation that appears

in the sum above. Thus M ≥ |h2| and both M and h2 are either integers or

half-integers. Also the set {hj} must satisfy the condition h2 ≥ h3..... ≥ |h[n
2

]|

where all the hi are either integers or all are half-integers.

4.2.4 Minimally BPS states: distinguished supercharge and

commuting superalgebra

We will now describe states that are annihilated by at least one supercharge and

its conjugate. Consider the special supercharge Q with charges (j = −1
2
, h1 = 1, hi =

0, ε0 = 1
2
). Let S = Q†; it is easily verified that

{S,Q} = ∆ = ε0 − (h1 + j) (4.9)

Below we will be interested in a partition function over states annihilated by Q.

Clearly all such states transform in irreducible representations of that subalgebra of

the superconformal algebra that commutes with Q,S and hence ∆. This subalgebra
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is easily determined to be a real form of the supergroup D(n−2
2
, 1) or B(n−3

2
, 1),

depending on whether n is even or odd. We follow the same notation as [7].

The bosonic subgroup of this commuting superalgebra is SO(2, 1) × SO(n − 2).

The usual Cartan charge of SO(2, 1) (the SO(2) rotation) and the Cartan charges of

SO(n − 2) are given in terms of the Cartan elements of the parent superconformal

algebra by

E = ε0 + j, Hi = hi+1

(
with i = 1, 2, . . . , [

n− 2

2
]

)
. (4.10)

4.2.5 A Trace formula for the general Index and its Charac-

ter Decomposition

Let us define the Witten Index

IW = TrR[(−1)F exp(−β∆ +G)], (4.11)

where the trace is evaluated over any Hilbert space R that hosts a representation

(not necessarily irreducible) of the superconformal algebra. Here F is the Fermion

number operator; by the spin statistics theorem F = 2j in any quantum field theory.

G is any element of the subalgebra that commutes with {S,Q,∆}; by a similarity

transformation, G may be rotated into a linear combination of the Cartan generators

of the subalgebra.

The Witten Index (4.11) receives contributions only from states that are annihi-

lated by both Q and S (all other states yield contributions that cancel in pairs) and

have ∆ = 0. So, it is independent of ζ. The usual arguments[2] also ensure that

IW is an Index; consequently it must be possible to expand IW as a linear sum over
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the Indices defined in the previous section. In fact it is easy to check that for any

representation A(reducible or irreducible),

IW (A) =
∑
M,{hi}

IM,{hi}χsub(M + 2, hi) +
∑

{hj},h1−|h2|=0,1

n{c(−1

2
, h1− 1, hi)}χsub(h1, hi).

(4.12)

where χsub(E,Hi) (with i = 1, 2, . . . , [n−2
2

]) is the supercharacter of the subalgebra6

with E and Hi being the highest weights of a representation of the subalgebra in the

convention defined by (4.10). In the first term on the RHS of (4.12) the sum runs over

all the values of M, {hj} for which IM,{hj} is defined (see below (4.8)). In the second

term the sum runs over all the values of the set {hj} such that h2 ≥ h3..... ≥ |h[n
2

]|.

In order to obtain (4.13) we have used

IW (c(j, h1, hj)) = (−1)2j+1χsub(2j + h1 + 2, hi) (4.13)

IW (c(j = −1

2
, h1, hj)) = χsub(h1 + 1, hj) (4.14)

Equation (4.13) asserts that the set of ∆ = 0 states (the only states that contribute

to the Witten Index) in any short irreducible representation of the superconformal

algebra transform in a single irreducible representation of the commuting subalgebra.

In the case of regular short representations, the primary of the full representation has

∆ = 1. The primary of the subalgebra is obtained by acting on the primary of the full

representation with a supercharge with quantum numbers (j = 1
2
, h1 = 1, hi = 0, ε0 =

1
2
,∆ = −1). On the other hand the highest weight of an isolated superconformal

6The supercharacter of a representation R is defined as χsub(R) = trR(−1)F tr eµ·H, where µ ·H
is some linear combination of the Cartan generators specified by a chemical potential vector µ. F
is defined to anticommute with Q and commute with the bosonic part of the algebra. The highest
weight state is always taken to have F = 0.
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short primary itself has ∆ = 0, and so is also a primary of the commuting sub super

algebra. Equation (4.12) follows immediately from these facts.

Note that every Index that appears in the list of subsection 2.3 appears as the

coefficient of a distinct subalgebra supercharacter in (4.12). As supercharacters of dis-

tinct irreducible representations are linearly independent, it follows that knowledge of

IW is sufficient to reconstruct all superconformal Indices of the algebra. In this sense

(4.12) is the most general Index that is possible to construct from the superconformal

algebra alone.

4.2.6 The Index over M theory multi gravitons in AdS4 × S7

We will now compute the Witten Index defined above in specific examples of three

dimensional superconformal field theories. In this subsection we focus on the world

volume theory of the M2 brane in the large N limit. The corresponding theory has

supersymmetries and 16 superconformal symmetries. The bosonic subgroup of the

relevant superconformal algebra is SO(3, 2) × SO(8). We take the supercharges to

transform in the vector representation of SO(8); this convention is related to the one

used in much of literature on this theory by a triality flip.

In the strict large N limit, the Index over the M2 brane conformal field theory is

simply the Index over the Fock space of supergravitons for M theory on AdS4 × S7

[1, 57]. In order to compute this quantity we first compute the Index over single

graviton states; the Index over multi gravitons is given by the appropriate Bose-

Fermi exponentiation (sometimes called the plethystic exponential).7

7The Index we will calculate is sensitive to 1
16 BPS states. However, the 1

8 BPS partition function
has been calculated, even at finite N , in [58]
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Single particle supergravitons in AdS4 × S7 transform in an infinite class of rep-

resentations of the superconformal algebra. The primaries for this spectrum have

charges (see [59, 60]) (ε0 = n
2
,j = 0,h1 = n

2
,h2 = n

2
, h3 = n

2
,h4 = −n

2
) (h1, h2, h3 and

h4 denote SO(8) highest weights in the orthogonal basis; recall Qs here are taken

to transform in the vector rather than the spinor of SO(8)) where n runs from 1 to

∞ (we are working with the U(N) theory; n = 1 would be omitted for the SU(N)

theory).

It is not difficult to decompose each of these irreducible representations of the

superconformal algebra into representations of the conformal algebra, and thereby

compute the partition function and the Index over each of these representations. The

necessary decompositions were performed in [59], and we have verified their results

independently by means of the Racah Speiser algorithm. We direct the reader fo the

Appendix of [31] for a description of this procedure.

The results are listed in Table 4.1 below.8

It is now a simple matter to compute the Index over single gravitons. The Witten

Index for the nth graviton representation (Rn) is given by

IWRn = Tr∆=0

[
(−1)Fxε0+jyH1

1 yH2
2 yH3

3

]
=
∑
q

(−1)2jqx(ε0+j)qχ
SO(6)
q (y1, y2, y3)

1− x2
,

(4.15)

where q runs over all conformal representations with ∆ = 0 that appear in the

decomposition of Rn in table 4.1. H1, H2, H3 are the Cartan charges of SO(6) in the

‘orthogonal’ basis that we always use in this chapter. χSO(6), the SO(6) character, may

8Some of the conformal representations obtained in this decomposition are short (as conformal
representations) when n is either 1 or 2; the negative contributions in table 1 represent the charges
of the null states, which physically are operators set to zero by the equations of motion. See [6]
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Table 4.1: d=3 graviton spectrum

range of n ε0[SO(2)] SO(3) SO(8)[orth.(Qs in vector)] ∆ contribution
n ≥ 1 n

2
0 (n

2
, n

2
, n

2
, −n

2
) 0 +

n ≥ 1 n+1
2

1
2

(n
2
, n

2
, n

2
, −(n−2)

2
) 0 +

n ≥ 2 n+2
2

1 (n
2
, n

2
, (n−2)

2
, −(n−2)

2
) 0 +

n ≥ 2 n+3
2

3
2

(n
2
, (n−2)

2
, (n−2)

2
, −(n−2)

2
) 0 +

n ≥ 2 n+4
2

2 ( (n−2)
2
, (n−2)

2
, (n−2)

2
, −(n−2)

2
) 1 +

n ≥ 2 n+2
2

0 (n
2
, n

2
, n

2
, −(n−4)

2
) 1 +

n ≥ 3 n+3
2

1
2

(n
2
, n

2
, (n−2)

2
, −(n−4)

2
) 1 +

n ≥ 3 n+4
2

1 (n
2
, (n−2)

2
, (n−2)

2
, −(n−4)

2
) 1 +

n ≥ 3 n+5
2

3
2

( (n−2)
2
, (n−2)

2
, (n−2)

2
, −(n−4)

2
) 2 +

n ≥ 4 n+5
2

1
2

(n
2
, (n−2)

2
, (n−4)

2
, −(n−4)

2
) 2 +

n ≥ 4 n+7
2

1
2

( (n−2)
2
, (n−4)

2
, (n−4)

2
, −(n−4)

2
) 4 +

n ≥ 4 n+6
2

1 ( (n−2)
2
, (n−2)

2
, (n−4)

2
, −(n−4)

2
) 3 +

n ≥ 4 n+4
2

0 (n
2
, n

2
, (n−4)

2
, −(n−4)

2
) 2 +

n ≥ 4 n+6
2

0 (n
2
, (n−4)

2
, (n−4)

2
, −(n−4)

2
) 3 +

n ≥ 4 n+8
2

0 ( (n−4)
2
, (n−4)

2
, (n−4)

2
, −(n−4)

2
) 6 +

n = 1 2 1
2

(1
2
, 1

2
, 1

2
, 1

2
) 1 −

n = 1 5
2

0 (1
2
, 1

2
, 1

2
,−1

2
) 2 −

n = 2 3 0 (1, 1, 0, 0) 2 −
n = 2 7

2
1
2

(1, 0, 0, 0) 2 −
n = 2 4 1 (0, 0, 0, 0) 3 −

be computed using the Weyl character formula. The full Index over single gravitons

is

Isp =
∞∑
n=2

IWRn + IWR1
. (4.16)
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After some algebra we find

Isp =
[
− x

(
x2 − 1

)
y1y2y

2
3 +
√
x
√
y1
√
y2

(
x3 − y2 + y1

(
x3y2 − 1

))
y

3/2
3

− x
(
x2 − 1

)
(y1 + y2) (y1y2 + 1) y3 +

√
x
√
y1
√
y2

(
y2x

3 + y1

(
x3 − y2

)
− 1
)

√
y3 − x

(
x2 − 1

)
y1y2

]
/
[ (
x2 − 1

) (√
x
√
y1
√
y2 −

√
y3

)
(√

x
√
y1
√
y3 −

√
y2

) (√
x
√
y2
√
y3 −

√
y1

) (√
x−√y1

√
y2
√
y3

) ]
.

(4.17)

The Index over the Fock-space of gravitons may now be obtained from the above

single particle Index using

Ifock = exp

(∑
n

1

n
Isp(x

n, yn1 , y
n
2 , y

n
3 )

)
. (4.18)

In order to get a feel for this result, let us set yi = 1. The single graviton Index

reduces to

Isp =
2
√
x (2x+

√
x+ 2)

(
√
x− 1)

2
(x+ 1)

. (4.19)

In the high energy limit, x ≡ e−β → 1, this expression simplifies to Isp ≈ 20
β2 In this

limit the expression for the full Witten Index Ifock in (4.18) reduces to,

Ifock ≈ exp
20ζ(3)

β2
(4.20)

It follows that the thermodynamic expectation value of ε0 + j (which we denote by

Eind
av ) is given by

Eind
av = −∂ ln Ifock

∂β
=

40ζ(3)

β3
. (4.21)

The Index ‘entropy’ defined by

Ifock =

∫
dy exp{(−βy) + Sind(y)}, (4.22)
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evaluates to

Sind(E) =
60ζ(3)

(40ζ(3))
2
3

E
2
3 . (4.23)

It is instructive to compare this result with the relation between entropy and E

computed from the supersymmetric partition function, obtained by summing over

all supersymmetric states with no (−1)F – once again in the gravity approximation.

The single particle partition function evaluated on the ∆ = 0 states with all the other

chemical potentials except the one corresponding to E = ε0 + j set to zero is given

by,

Zsp(x) = tr∆=0x
E =

2
√
x(x+ 1)

(
x5/2 − 2x2 + 2x3/2 + 2x− 3

√
x+ 2

)
(
√
x− 1)

4
(x2 − 1)

, (4.24)

where once again x ≡ e−β, with β being the chemical potential corresponding to

E = ε0 + j. The bosonic and fermionic contributions to the partition function in

(4.24) are respectively given by,

Zbose
sp (x) = tr∆=0 bosonsx

E =
−
(
−x4 + 4x7/2 − 6x3 + x2 − 4x3/2 + 6x− 4

√
x
)

(1−
√
x)

5
(
√
x+ 1) (x+ 1)

(4.25)

Zfermi
sp (x) = tr∆=0 fermionsx

E =
−
(
−x4 + x2 − 4x3/2

)
(1−

√
x)

5
(
√
x+ 1) (x+ 1)

(4.26)

To obtain the Index on the Fock space, we need to multi-particle the partition

function above with the correct Bose-Fermi statistics. This leads to

Zfock = exp
∑
n

Zbose
sp (xn) + (−1)n+1Zfermi

sp (xn)

n
. (4.27)

We find, that for β << 1

lnZfock =
63ζ(6)

β5
, (4.28)
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and a calculation similar to the one done above yields

S(E) =
378ζ(6)

(315ζ(6))
5
6

E
5
6 . (4.29)

which is the growth of states with energy of a six dimensional gas, an answer that could

have been predicted on qualitative grounds. Recall that the theory of the worldvolume

of the M2 brane has 4 supersymmetric transverse fluctuations and one supersymmet-

ric derivative. Bosonic supersymmetric gravitons are in one to one correspondence

with ‘words’ formed by acting on symmetric combinations of these scalars with an

arbitrary number of derivatives. Consequently, supersymmetric gravitons are labelled

by 5 integers ni, nd (the number of occurrences of each of these four scalars i = 1 . . . 4

and the derivative nd) and the energy of these gravitons is E = 1
2
(
∑

i ni) + nd. This

is the same as the formula for the energy of massless photons in a five spatial dimen-

sional rectangular box, four of whose sides are of length two and whose remaining

side is of unit length, explaining the effective six dimensional growth.

We conclude that the growth of states in the effective Index entropy is slower than

the growth of supersymmetric states in the system; this is a consequence of partial

Bose-Fermi cancellations (due to the (−1)F ).

4.2.7 The Index on the worldvolume theory of a single M2

brane

We will now compute our Index over the worldvolume theory of a single M2

brane. For this free theory, the single particle state content is just the representation

corresponding to n = 1 in Table 4.1 of the previous subsection. This means that it
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corresponds to the representation of the d = 3 superconformal group with the primary

having charges ε0 = 1
2
, j = 0 and SO(8) highest weights (in the convention described

above) [1
2
, 1

2
, 1

2
,−1

2
].

For the reader’s convenience, we reproduce the conformal multiplets that appear

in this representation in the Table below. Physically, these multiplets correspond to

the 8 transverse scalars, their fermionic superpartners and the equations of motion

for each of these fields.9

letter ε0 j [h1, h2, h3, h4] ∆ = ε0 − j − h1

φa 1
2

0 [1
2
, 1

2
, 1

2
,−1

2
] 0

ψa 1 1
2

[1
2
, 1

2
, 1

2
, 1

2
] 0

∂/ψa = 0 2 1
2

[1
2
, 1

2
, 1

2
, 1

2
] 1

∂2φa = 0 5
2

0 [1
2
, 1

2
, 1

2
,−1

2
] 2

(4.30)

The Index over these states is

Isp
M2

(x, yi) = Tr
[
(−1)Fxε0+jyH1

1 yH2
2 yH3

3

]
=
x

1
2 (1 + y1y2 + y1y3 + y2y3)− x 3

2 (y1 + y2 + y3 + y1y2y3)

(y1y2y3)
1
2 (1− x2)

(4.31)

For simplicity, let us set yi → 1. Then, we find

Isp
M2

(x, yi = 1) =
4x

1
2

1 + x
(4.32)

Multiparticling this Index, to get the Index over the Fock space on the M2 brane, we

9Please see [61, 62] and references therein for more details on this worldvolume theory and [63]
for some recent work.
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find that

IM2(x, yi = 1) = exp
∑
n≥1

IM2(xn, yi = 1)

n

=

(∏
n≥0

1− x2n+ 3
2

1− x2n+ 1
2

)4 (4.33)

At high temperatures x ≡ e−β → 1, the Index grows as

IM2|x→1,yi=1 =

(
β

2

)4

(4.34)

The single particle supersymmetric partition function, obtained by summing over

all ∆ = 0 single particle states with no (−1)F is,

Zsusy,sp
M2

(x, yi) = Tr∆=0

[
xε0+jyH1

1 yH2
2 yH3

3

]
=
x

1
2 (1 + y1y2 + y1y3 + y2y3) + x

3
2 (y1 + y2 + y3 + y1y2y3)

(y1y2y3)
1
2 (1− x2)

(4.35)

Setting yi → 1,

Zsusy,sp
M2

(x, yi = 1) =
4x

1
2

1− x
(4.36)

with individual contributions from bosons and fermions being

Zsusy,sp,bose
M2

(x) = tr∆=0 bosonsx
E =

4x
1
2

(1− x2)

Zsusy,sp,fermi
M2

(x) = tr∆=0 fermionsx
E =

4x
3
2

(1− x2)

(4.37)

Finally, multi-particling this partition function with the appropriate bose-fermi statis-

tics, we find that

ZM2(x, yi = 1) =

(∏
n≥0

1 + x2n+ 3
2

1− x2n+ 1
2

)4

(4.38)

At high temperatures x→ 1, the supersymmetric partition function grows as

ZM2(x→ 1, yi = 1) ≈ exp

{
π2

2β

}
(4.39)

Note, that this partition function grows significantly faster at high temperatures than

the Index (4.33).
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4.2.8 Index over Chern Simons Matter Theories

In this subsection, we will calculate the Witten Index described above for a class of

the superconformal Chern Simons matter theories recently studied by Gaiotto and Yin

[55]. The theories studied by these authors are three dimensional Chern Simons gauge

theories coupled to matter fields; we will focus on examples that enjoy invariance

under a superalgebra consisting of 4 Qs and 4 Ss (i.e. the R symmetry of these theories

is SO(2)). The matter fields, which may be thought of as dimensionally reduced

d = 4 chiral multiplets, carry the only propagating degrees of freedom. The general

constructions of Gaiotto and Yin allow the possibility of nonzero superpotentials with

a coupling α that flows in the infra-red to a fixed point of order 1
k

where k is the level

of the Chern Simons theory. In our analysis below we will focus on the limit of large

k. In this limit, the theory is ‘free’ and moreover we may treat 1
k

as a continuous

parameter. The arguments above then indicate Index that we compute below for the

free theory will be invariant under small deformations of 1
k
.

Consider this free conformal 3 dimensional theory on S2. We are interested in

calculating the letter partition function (i.e. the single particle partition function) for

the propagating fields which comprise a complex scalar φ and its fermionic superpart-

ner ψ. This may be done by enumerating all operators, linear in these fields, modulo

those operators that are set to zero by the equations of motion. We will be interested

in keeping track of several charges: the energy ε0, SO(3) angular momentum j, SO(2)

R-charge h and ∆ = ε0 − h − j of our states. The following table (which lists these
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charges) is useful for that purpose

letter ε0 j h ∆ = ε0 − j − h

φ 1
2

0 1
2

0

φ∗ 1
2

0 −1
2

1

ψ 1 1
2

−1
2

1

ψ∗ 1 1
2

1
2

0

∂µ 1 {±1, 0} 0 {0, 2, 1}

∂µσ
µψ = 0 2 1

2
−1
2

2

∂µσ
µψ∗ = 0 2 1

2
1
2

1

∂2φ = 0 5
2

0 1
2

2

∂2φ∗ = 0 5
2

0 −1
2

3

(4.40)

The last four lines, with equations of motion count with minus signs in the partition

function. The list above comprises two separate irreducible representations of the

superconformal algebra. φ, ψ and derivatives on these letters make up one represen-

tation. The other representation consists of the conjugate fields.

Let the partition functions over these two representations be denoted by z1 and

z2. We find

z1[x, y, t] = trφ,ψ,...(x
2ε0y2jth) =

t
1
2x(1 + x2) + t

−1
2 x2(y + 1/y)

(1− x2y2)(1− x2/y2)

z2[x, y, t] = trφ∗,ψ∗,...(x
2ε0y2jt2h) =

t
−1
2 x(1 + x2) + t

1
2x2(y + 1/y)

(1− x2y2)(1− x2/y2)

(4.41)



Chapter 4: Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions 102

The Index (4.11) over single particle states is obtained by setting t→ 1/x, y → −1

I1[x] = z1[x,−1, 1/x] = tr((−1)F (x)2ε0−h) =
x

1
2

1− x2

I2[x] = z2[x,−1, 1/x] = tr((−1)Fx2ε0−h) =
−x 3

2

1− x2

I[x] = I1[x] + I2[x] =
x

1
2

1 + x

(4.42)

In terms of these quantities, the Index of the full theory is given by[3, 4]

IW =

∫
DU exp

[
∞∑
n=1

∑
m

I(xn)

n
TrRm(Un)

]
(4.43)

where m run over the chiral multiplets of the theory, which are taken to transform

in the Rm representation of U(N), and TrRm is the trace of the group element in the

Rth
m representation of U(N).

In the large N limit the integral over U in (4.43) may be converted into an integral

over the eigenvalue distribution of U , ρ(θ), which, in turn, may be computed via saddle

points.10 The Fourier coefficients of this eigenvalue density function are given by:

ρn =

∫ π

−π
ρ(θ) cos(nθ) (4.44)

Adjoint Matter

In order to get a feel for this formula, we specialize to a particular choice of

matter field content. We consider a theory with c matter fields all in the adjoint

representation. In the large N limit the Index is given by

I(x) = Trcoloursinglets(−1)Fx2ε0−h

=

∫
dρn exp

(
−N2

∞∑
n=1

1

n
(1− cI[xn])ρ2

n

) (4.45)

10Note that Nρ(θ)dθ gives the number of eigenvalues between eiθ and ei(θ+dθ) and
∫ π
−π ρ(θ)dθ =

1, ρ(θ) ≥ 0
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The behaviour of this Index as a function of x is dramatically different for c ≤ 2 and

c ≥ 3. In order to see this note that at any given value of x, the saddle point occurs

at ρ(θ) = 1
2π

i.e ρ0 = 1, ρn = 0, n > 0 provided that[3, 4]

1− cI[xn] > 0,∀n (4.46)

In this case the saddle point contribution to the Index vanishes; the leading contri-

bution to the integral is then from the Gaussian fluctuations about this saddle point.

Under these conditions the logarithm of the Index or the ‘free-energy’ a 11 is then of

order 1 in the 1
N

expansion.

It is easy to check that (4.46) is satisfied at all values of x (which must lie between

zero and one in order for (4.11) to be well defined) when c ≤ 2. On the other hand,

if c ≥ 3 this condition is only met for

x <

(
1

2

(
c−
√
c2 − 4

))2

(4.47)

At this value of x the coefficient of ρ2
1 in (4.45) switches sign and the saddle point

above with a uniform eigenvalue distribution is no longer valid. The new saddle

point that dominates this integral above this value of x, has a Gross-Witten type

gap in the eigenvalue distribution. The Index undergoes a large N first order phase

transition at the critical temperature listed in (4.47). At and above this temperature

the ‘free-energy’ is of order N2.

Note that I(1) = 1
2
. It follows that the Index is well defined even at strictly

infinite temperature This is unlike the logarithm of the actual partition function of

11We use this term somewhat loosely, since we are referring here to an Index and not a partition
function
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the same theory, whose x → 1 limit scales like N2/(1 − x)2 as x → 1 (for all values

of c) reflecting the T 2 dependence of a 2+1 dimensional field theory. This difference

between the high temperature limits of the Index and the partition function reflects

the large cancellations of supersymmetric states in their contribution to the Index.

Fundamental Matter

As another special example, let us consider a theory whose Nf matter fields all

transform in the fundamental representation of U(N). We take the Veneziano limit:

Nc →∞, c =
Nf
Nc

fixed. The Index for the theory is now given by

I(x) = Trcoloursinglets(−1)Fx2ε0−h

=

∫
dρn exp(−N2

∞∑
n=1

(ρn − cI[xn])2 − c2I[xn]2

n
)

(4.48)

At low temperatures the integral in (4.48) is dominated by the saddle point

ρn = cI(xn). (4.49)

As the temperature is raised the integral in (4.48) undergoes a Gross-Witten type

phase transition when c is large enough. This is easiest to appreciate in the limit

c � 1. In this limit ρ1 = 1
2

in the low temperature phase when at x ≈ 1
4c2

, and

ρn = 1
2ncn−1 � 1. At approximately this value of x the low temperature eigenvalue

distribution ρ(θ) formally turns negative at θ = π. This is physically unacceptable

(as an eigenvalue density is, by definition, intrinsically positive). In actual fact the

system undergoes a phase transition at this value of x. At large c this phase transition

is very similar to the one described by Gross and Witen in [64] and in a more closely

related context by [65]. The high temperature eigenvalue distribution is ‘gapped’ i.e.

it has support on only a subset (centered about zero) of the interval (−π, π).
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For this phase transition to occur, we need c ≥ 3. To arrive at this result, we

notice that the distribution (3.87) implies

lim
x→1−

ρ(π) = lim
x→1−

ρ(−π) =
1

π

(
1

2
− c

4

)
(4.50)

So, for c ≥ 3, ρ(π) would always turn negative for some value of x. Beyond this

temperature the saddle point (3.87) is no longer valid.

4.3 d=6

4.3.1 The Superconformal Algebra and its Unitary Repre-

sentations

The bosonic subalgebra of the d = 6 superconformal algebra is SO(6, 2)⊗Sp(2n)

(the conformal algebra times the R symmetry algebra). The anticommuting genera-

tors in this algebra may be divided into the generators of supersymmetry (Q) and the

generators of superconformal symmetries (S). Supersymmetry generators transform

in the fundamental representation of the R-symmetry group Sp(2n), 12 have charge

half under dilatations (the SO(2) factor of the compact SO(6)⊗ SO(2) ∈ SO(6, 2))

and are chiral spinors under the SO(6) factor of the same decomposition. Super-

conformal generators Sµi = (Qi
µ)† transform in the anti-chiral spinor representation

of SO(6), have scaling dimension (dilatation charge) (−1
2
), and also transform in

the anti-fundamental representation of the R-symmetry group. The charges of these

generators are given in more detail in the appendix of [31]. In our notation for su-

12With our conventions, Sp(2n) is of rank n. Sp(2) = SO(3) and Sp(4) = SO(5).
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persymmetry generators i is an SO(6) spinor Index while µ is an R symmetry vector

Index.

The commutation relations for this superalgebra are described in detail in [7].

As usual, the anticommutator between two supersymmetries is proportional to mo-

mentum times an R symmetry delta function, and the anticommutator between two

superconformal generators is obtained by taking the Hermitian conjugate of these

relations. The most interesting relationship in the algebra is the anticommutator

between Q and S. Schematically

{Sµi , Qj
ν} ∼ δµνT

j
i − δ

j
iM

µ
ν

Here T ij are the U(4) ∼ SO(6)×SO(2) generators andMµν are the Sp(2n) generators.

The energy ε0, SO(6) highest weight (denoted by h1, h2 and h3 in the orthogonal basis

13) and the R-symmetry highest weights (k, k1 . . . , k(n−1)) of primary states form a

complete set of labels for the representation in question. We use a non-standard

normalization for the R-symmetry weights. In particular,

k =
ko

2
, ki =

koi
2

(4.51)

Here [ko, koi ] are the highest weights of Sp(2n) in the orthogonal basis.14 As we

have noted above, at the level of the algebra, SO(2) × SO(6) ∼ U(4). We will

sometimes find it convenient to label primaries by eigenvalues ci under the generators

T ii ≡ Ti of U(4)15 rather than by the energy and SO(6) weights. For any highest

13hi are eigenvalues under rotations in orthogonal 2 planes in Rn. Thus, for instance, {hi} =
(1, 0, 0) in the vector representation. They are either integer or half integer and satisfy the constraint
h1 ≥ h2 ≥ |h3| ≥ 0

14In the orthogonal basis, the Cartans of Sp(2n) are 2n × 2n matrices with elements
diag(iσ2, 0, 0 . . .),diag(0, iσ2, 0, 0, . . .), . . ., where each 0 is shorthand for a 2× 2 matrix

15In the defining representation of U(4) (Ti)ab = δai δ
i
b.
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weight (c1, c2, c3, c4) the eigenvalues satisfy c1 ≥ c2 ≥ c3 ≥ c4 ≥ 0 and ci s are

always integers. For future reference we note the change of basis between the Cartan

elements ε0, h1, h2, h3 (the energy and 3 orthogonal SO(6) Cartan generators) and

T1, T2, T3, T4:

ε0 =
1

2
(T1 + T2 + T3 + T4)

h1 =
1

2
(T1 + T2 − T3 − T4)

h2 =
1

2
(T1 − T2 + T3 − T4)

h3 =
1

2
(T1 − T2 − T3 + T4)

(4.52)

As in the case of the d = 3 algebra, any irreducible representation of the super-

conformal algebra may be decomposed into a finite number of distinct irreducible

representations of the conformal algebra. The latter are labeled by their own con-

formal primary states, which have a definite lowest energy and transform in a given

irreducible representation of SO(6).

We will now analyse the constraints imposed by unitarity on the quantum numbers

of primary states; for this purpose we will find it convenient to use the U(4) labeling

of primaries introduced above. Let Qi
µ i = 1, · · · , 4. and µ = ±1, · · · ,±n denote the

supersymmetry whose charge under U(4) Cartan Tj are δij and under the R-symmetry

Cartan Mν is (sign ofµ) × δν|µ|. The superconformal generators are Sµi = (Qi
µ)† and

therefore they have the same charges as Qi
µ but with opposite sign.

4.3.2 Norms and Null States

In this subsection we study unitarity restrictions (and the resultant structure of

null states) of representations of the superconformal algebra. This analysis turns out
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to be a little more intricate than its d = 3 counterpart.

As we have seen above, states in the same representation of the superconformal

algebra do not all have the same norm. However states that lie within the same

representation of the maximal compact subgroup of the algebra, U(4) × Sp(2n), do

have the same norm. Consequently, in order to examine the constraints from unitarity,

we need only examine one state per representation of this compact subalgebra.

In order to study the restrictions imposed by unitarity at level ` we should, in

principle, study all states obtained by acting with the tensor product of an arbitrary

combination of ` supersymmetries on the set of primary states of an irreducible rep-

resentation of the superconformal algebra. This set of states may be Clebsh Gordan

decomposed into a sum of irreducible representations of U(4)×Sp(2n); and we should

compute the norm of at least one state in each of these representations, and ensure

its positivity in order to guarantee unitarity. However this problem is significantly

simplified by the observation that the most stringent condition on unitarity occurs in

those states that transform in the ‘largest’ Sp(2n) [66]. Now it is easy to construct

a state in the largest Sp(2n) representation: one simply acts on those primary states

that are Sp(2n) highest weight with ` Sp(2n) highest weight supersymmetries, i.e.

supersymmetries of the form Qi
1. This prescription completely fixes the Sp(2n) quan-

tum numbers of the states we will study in this section. All that remains is to study

the decomposition of all such states into irreducible representations of U(4) and to

compute the norm of one state in each of these representations.

The decomposition of the states of interest into U(4) representations at level `

is easily performed using Young Tableaux techniques. The set of U(4) tableaux for
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representations of the descendants is obtained by adding ` boxes to the tableaux of

the primary in all possible ways that give rise to a legal tableaux, subject to the

restriction that no two ‘new’ boxes occur on the same row (this restriction is forced

on us by the antisymmetry of the Qi
1 operators). Note, that in this decomposition,

no representation occurs more than once.16

It is not too difficult to find an explicit formula for the highest weight states of each

of these representations. Let us define the operators
(
Ai =

∑i
j=1 Q

j
1Υi

j

)
i = 1, · · · , 4

where Υi
j are functions of the U(4) generators defined by

Υj
j =Identity (no sum over j)

Υ4
1 =−

[
T 2

1 T
3
2 T

4
3

(
(T3 − T4 + 1)(T2 − T4 + 2)

(T3 − T4)(T2 − T4 + 1)

)
− T 3

2 T
4
3 T

2
1

(
T3 − T4 + 1

T3 − T4

)
− T 4

3 T
2
1 T

3
2

(
T2 − T4 + 2

T2 − T4 + 1

)
+ T 4

3 T
3
2 T

2
1

]( 1

T1 − T4 + 2

)
Υ4

2 =−
(
T 4

3 T
3
2 − T 3

2 T
4
3

(
T3 − T4 + 1

T3 − T4

))(
1

T2 − T4 + 1

)
Υ4

3 =− T 4
3

(
1

T3 − T4

)
Υ3

1 =−
(
T 3

2 T
2
1 − T 2

1 T
3
2

(
T2 − T3 + 1

T2 − T3

))(
1

T1 − T3 + 1

)
Υ3

2 =− T 3
2

(
1

T2 − T3

)
Υ2

1 =− T 2
1

(
1

T1 − T2

)
(4.53)

The operators Ai have been determined to have the following property: when acting

on a highest weight state |ψ〉 of U(4) with quantum numbers (c1, c2, c3, c4), Ai|ψ〉

16For a generic primary tableaux the number of representations obtained at level ` is
(

4
`

)
corre-

sponding to the choice of which rows the new boxes are appended to. If the U(4) highest weights of
the primary are c1, c2, c3, c4, the representation obtained by appending new boxes to the rows Ri1 ,
Ri` has highest weights ci1 ...ci` increased by one, while all other weights are unchanged.
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is another highest weight state of U(4) with quantum numbers (ci1, c
i
2, c

i
3, c

i
4) where

cij = cj + δji , whenever it is well defined. The last condition (being well defined) is

met if and only if the weights of |ψ〉 obey the inequality ci < ci−1. 17

Let |ψ〉 denote the primary state that is a U(4) highest weight. It follows that the

states Ai1 ...Ai` |ψ〉 is the highest weight state in the representation with additional

boxes in the rows i1...i` described above. We will now study the norm of these states.

It is not difficult to explicitly verify that (when this state is well defined)

|Ai|ψ〉|2 ∝ (ci − 2k − i+ 1) ≡ Bi(ci, k) (4.54)

More generally, it is also true that∣∣∣∣∣
l∏

m=1

Aim|ψ〉

∣∣∣∣∣
2

∝
l∏

m=1

Bi(cim , k) (4.55)

where the proportionality factor in (4.55) is a function of the the SU(3) weights ci−cj

of the representation but is independent of the energy.18 In order to see this note that

different states of the form (4.55), obtained by interchanging the order of the Aim op-

erators, are each proportional to the highest weight state of a given representation.

Now no U(4) representation occurs more than once in the tensor product of super-

symmetry generators with the primary, these representations are proportional to each

other. As the commutator of Ai operators is independent of energy, it follows that

the proportionality factor between these states is also independent of energy.

Now the norm of the state in (4.55) clearly has a factor of Bil(ci) in it. However

upon interchanging the order of the Ai factors, the same result is true for Bim for

17This is rather intuitive; when this condition is not met, the set (ci1, c
i
2, c

i
3, c

i
4) do not constitute

a valid set of labels for an irreducible representation of U(4).

18More precisely, the proportionality factor is a function of the ci that is invariant under a uniform
constant shift of each ci.
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each of m = 1 to l. The norm of a state at level ` is a polynomial of degree ` in the

energy of the state. It follows that the full energy dependence of the norm of this

state is given as in (4.55); the proportionality factor in that equation is a function

only of SU(3) weights and is independent of energy.

The proof presented above, strictly speaking, applies only when each of the opera-

tors Aim has well defined action on |ψ〉. However, as the algebra involved in computing

(4.55) is smooth (it does not care about the values of ci provided only that the state

on the LHS of (4.55) is well defined), and so the result (4.55) continues to apply,

whenever the state whose norm is being computed is well defined.

The unitarity restrictions and short representations of this superconformal algebra

now follow almost immediately from (4.55). First consider the generic case represen-

tation where (c1 > c2 > c3 > c4). All states listed in (4.55) are well defined in this case

and it follows c4−3−2k ≥ 0 is necessary and sufficient for unitarity. Representations

that saturate this bound are short; the zero norm primary state is

|Z4〉 = A4|h.w〉 (4.56)

consistent with the result of [14].

The state (4.55) is not well defined when c3 = c4. However even in this case

the state (A4A3) |ψ〉 is well defined provided c2 6= c3. The norm of this state is

proportional to B4 × B3. A little thought shows that the necessary and sufficient

condition for unitarity is either B4 ≥ 0 (this is (4.56)) or that B3 = 0. In the later

case the representation is short, and its level one zero norm primary is A3|ψ〉. On

the other hand when B4 = 0 the representation is also short. Its’ zero norm primary

occurs at level 2 and is (A4A3) |ψ〉.
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It is clear that this pattern generalizes simply. If c4 = c3 = c2 but c2 6= c1 then the

necessary and sufficient condition for unitarity is either B4 ≥ 0 or B3 = 0 or B2 = 0.

When B2 = 0 the zero norm primary occurs at level one and is given by A2|ψ〉. When

B3 = 0 the zero norm primary occurs at level 2 and is given by (A3A2) |ψ〉. When

B4 = 0 the zero norm primary occurs at level 3 and is given by (A4A3A2) |ψ〉.

Finally when c4 = c3 = c2 = c1 the necessary and sufficient condition for unitarity

is either B4 ≥ 0 or B3 = 0 or B2 = 0 or B1 = 0. When B1 = 0 the level one primary

is given by A1|ψ〉. When B2 = 0 the level two primary is given by (A2A1) |ψ〉. When

B3 = 0 the level three primary is given by (A3A2A1) |ψ〉. When B4 = 0 the level four

primary is given by (A4A3A2A1) |ψ〉.

We may translate the analysis of zero norm states above into SO(2) × SO(6)

notation by using the transformations of (4.52). This yields the result that represen-

tations are short if the energy ε0 and SO(6) weights hi satisfy one of the following

conditions (see [7, 66])

ε0 =h1 + h2 − h3 + 4k + 6, when h1 ≥ h2 ≥ |h3|.

ε0 =h1 + 4k + 4, when h1 ≥ h2 and h2 = h3.

ε0 =h1 + 4k + 2, when h1 = h2 = h3 6= 0.

ε0 =4k, when h1 = h2 = h3 = 0.

(4.57)

The last three conditions give isolated short representations.
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4.3.3 Null Vectors and Character Decomposition of a Long

Representation at the Unitarity Threshold

As discussed in the previous subsection, just like d = 3 the short representations

of d = 6 super-conformal algebra can be broadly classified into two types, the regular

ones and the isolated ones. However unlike d = 3 here the isolated short repre-

sentations are of three kinds as we describe below. The energy of a regular short

representations is given by ε0 = h1 + h2 − h3 + 4k + 6. The null states of this repre-

sentation also transform in an irreducible representation of the algebra; for h1 > h2

and h2 − 1
2
> |h3 − 1

2
| the highest weights of the primary at the head of this (null)

irreducible representation (which occurs at level 1) are given in terms of the highest

weight of the representation by ε′0 = ε0 + 1
2
, h′1 = h1 − 1

2
, h′2 = h2 − 1

2
, h′3 =

h3 + 1
2
, k′ = k + 1

2
, k′i = ki (where i = 1, 2, ...., (n − 1)) and k, ki are half the

weights of the R-symmetry group Sp(2n) in the orthogonal basis as defined in subsec-

tion (§§4.3.1). Note that ε′0−h′1−h′2 +h′3−4k′−6 = ε0−h1−h2 +h3−4k−6 = 0, so

that the null states also transform in a regular short representation. As union of the

ordinary and null state of such short representations is identical to the state content

of a long representation at the edge of the unitarity bound, we conclude that,

lim
δ→0

χ[h1+h2 − h3 + 4k + 6 + δ, h1, h2, h3, k, ki]

= χ[h1 + h2 − h3 + 4k + 6, h1, h2, h3, k, ki]

+ χ[h1 + h2 − h3 + 4k +
13

2
, h1 −

1

2
, h2 −

1

2
, h3 +

1

2
, k +

1

2
, ki],

(with h1 > h2 > |h3| ≥ 0),

(4.58)
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where χ(ε0, h1, h2, h3, k, ki) denotes the character of the irreducible representation of

super-conformal algebra with energy ε0, SO(6) highest weight (h1, h2, h3) and Sp(2n)

highest weight (k, ki).

On the other hand, when h1 > h2 = h3(= h, say) the null states of the regular

short representation occur at level 2 and are labelled by a primary with highest weights

ε′0 = ε0 + 1, h′1 = h1 − 1, h′2 = h2 = h, h′3 = h3 = h, k′ = k + 1, k′i = ki,

where ε0, hi, k, ki refer to the highest weights of the original representation. Note in

particular that h′2 = h′3 and ε′0 − h′1 − 4k′ − 4 = ε0 − h1 − h2 + h3 − 4k − 6 = 0.

It follows that the null states of this representation transform in an isolated short

representation and we conclude,

lim
δ→0

χ[h1 + 4k + 6 + δ, h1, h, h, k, ki] = χ[h1 + 4k + 6, h1, h, h, k, ki]

+ χ[h1 + 4k + 7, h1 − 1, h, h, k + 1, ki]

(with h1 > h2 = h3 = h ≥ 0).

(4.59)

As we have discussed earlier isolated short representations are separated from

all other representations with the same SO(6) and Sp(2n) quantum numbers by a

gap in energy. Hence it is not possible to approach such a representation with long

representations; consequently we have no equivalent of (4.59) at energies equal to

h1 + 4k + 7 + δ.

Similarly when h1 = h2 = h3(= h 6= 0) the null states of the regular representation

occur at level 3 and are labelled by a primary with highest weights ε′0 = ε0 + 3
2
, h′1 =

h− 1
2
, h′2 = h− 1

2
, h′3 = h− 1

2
, k′ = k+ 3

2
. Note in particular that h′1 = h′2 = h′3

and ε′0 − h′1 − 4k′ − 2 = ε0 − h1 − 4k − 6 = 0. Consequently the null states of this

representation transforms in an isolated short representation, and we conclude,



Chapter 4: Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions 115

lim
δ→0

χ[h+ 4k + 6 + δ, h, h, h, k, ki] =χ[h+ 4k + 6, h, h, h, k, ki]

+ χ[h+ 4k +
15

2
, h− 1

2
, h− 1

2
, h− 1

2
, k +

3

2
, ki].

(with h1 = h2 = h3 = h > 0)

(4.60)

As explained above, we have no equivalent of (4.60) at energies equal to h+4k+ 15
2

+δ

which corresponds to the unitarity bound for an isolated short representation.

Finally when h1 = h2 = h3 = 0 the null states of the regular representation occur

at level 4 and are labelled by primary with highest weights ε′0 = ε0 + 2, h′1 = h1 =

0, h′2 = h2 = 0, h′3 = h3 = 0, k′ = k + 2, k′i = ki. Note in particular that in

this case h′1 = h′2 = h′3 = 0 and ε′0 − 4k′ = ε0 − 4k − 6 = 0. Therefore the null states

of this representation transform in an isolated short representation and we conclude,

lim
δ→0

χ[4k + 6 + δ, 0, 0, 0, k, ki] = χ[4k + 6, 0, 0, 0, k, k − i]+χ[4k + 8, 0, 0, 0, k + 2, ki].

(with h1 = h2 = h3 = 0)

(4.61)

There is no equivalent of (4.61) at energies equal to 4k + 6 + δ.

As in the previous section, the analysis of the character formulae above and the

definition of Indices is much simplified by the introduction of some additional nota-

tion. Given a short representation we will use the notation c(h1, h2, h3, k, ki) to refer

to this representation where the relationship between the numbers hi, k, ki and the

highest weights of the representation in question is defined in Table 4.2.
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Table 4.2: Notations for short representations

notation for rep. ε0 SO(6) Sp(2n)
highest highest
weight weight

Regular Short Rep.
c(h1, h2, h3, k, ki) h1 + h2 − h3 + 4k + 6 (h1, h2, h3) (k, ki)

(with h1 ≥ h2 ≥ |h3|
and k ≥ 0)

Isolated Short Reps
c(h1, h− 1

2
, h+ 1

2
, k, ki) h1 + 4k + 11

2
(h1 − 1

2
, h, h) (k + 1

2
, ki)

(with h1 ≥ h+ 1
2

h ≥ 0 and k ≥ −1
2
)

c(h, h, h+ 1, k, ki) h+ 4k + 6 (h, h, h) (k + 1, ki)
(with h ≥ 0
and k ≥ −1)

c(−1
2
,−1

2
, 1

2
, k, ki) 4k + 6 (0, 0, 0) (k + 3

2
, ki)

(with k ≥ −3
2

4.3.4 Indices

As in the d = 3 case, we define an Index for d = 6 as any linear combination of

the multiplicities of short representations that evaluates to zero on every collection

of representations that appear on the RHS of (4.58), (4.59), (4.60),and (4.61) so that

it is invariant under any deformation of superconformal field theory under which the

spectrum evolves continuously. We now proceed to list all of these Indices,

1. The simplest Indices are given by the multiplicities of short representations in

the spectrum that never appear on the RHS of (4.58), (4.59), (4.60),and (4.61)

(for any values of the quantum numbers on the LHS of those equations). All

such representations are easy to list; they are
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• c(h1, h− 1
2
, h+ 1

2
, k, ki) for all h1 ≥ h+ 1

2
, h ≥ 0 and k − k1 = −1

2
, 0.

• c(h, h, h+ 1, k, ki) for all h ≥ 0 and k − k1 = −1,−1
2
, 0

• c(−1
2
,−1

2
, 1

2
, k, ki) for k − k1 = −3

2
,−1,−1

2
, 0

In all the above cases we must consider all the possible values of the set ki, i =

1 . . . n − 1. This means k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0 and the ki may each be

integers or half integers.

2. We can also construct Indices from linear combinations of the multiplicities of

representations that do appear on the RHS of (4.58), (4.59), (4.60),and (4.61).

The complete list of such linear combinations is given by,

IM1,M2,M3,{ki} =

2(M1−k1)∑
p=M3−1

(−1)p+1n{c(M2 +
p

2
,
p

2
,M3 −

p

2
,M1 −

p

2
, ki)}, (4.62)

where n{R} denotes the number of representations of type R and the Index

labels M1, M2 and M3 are respectively the values of h2 + k, h1 − h2 and M3 =

h2 +h3 for the regular representations that appears in the above sum. Here M2

and M3 are integers greater than or equal to zero and M1 is an integer or half

integer with M1 ≥ M3

2
+ k1.

4.3.5 Minimally BPS states: distinguished supercharge and

commuting superalgebra

Consider the special Q with charges (h1 = −1
2
, h2 = −1

2
, h3 = 1

2
, k = 1

2
, ε0 = 1

2
).

Let S = Q†; it is then easily verified that,
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2{S,Q} ≡ ∆ = ε0 − (h1 + h2 − h3 + 4k) (4.63)

Just as in d = 3, we shall define a partition function over states annihilated by Q.

Again all such states transform in an irreducible representation of the subalgebra of

the superconformal algebra that commutes with Q,S and hence ∆. This subalgebra

is easily determined to be the supergroup D(3, n−2
2

) (see [7]).

The bosonic subgroup of this commuting superalgebra is SU(3, 1) ⊗ Sp(n − 2).

The usual Cartan charges of SU(3, 1) and the Cartan charges of Sp(n− 2) are given

in terms of the Cartan elements of the full superconformal algebra by,

E = 3ε0 + h1 + h2 − h3;H1 = h1 − h2;H2 = h2 + h3;Ki = ki+1, (4.64)

where E is the U(1) Cartan, (H1, H2) are the SU(3) Cartans (in the Dynkin basis)

and Ki are the Sp(n− 2) Cartans (in the orthogonal basis). 19

4.3.6 A Trace formula for the general Index and its Charac-

ter Decomposition

As in the case of d = 3, we define the Witten Index as,

IW = TrR[(−1)F exp (−ζ∆ + µG)], (4.65)

19Specifically the Cartans H1 and H2 are the following 3× 3 SU(3) matrices,

H1 =

 0 0 0
0 1 0
0 0 −1

 , H2 =

 1 0 0
0 −1 0
0 0 0


.
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Where the trace is evaluated over any Hilbert space that hosts a representation

of the d = 6 superconformal algebra. Here F is the fermion number operator; by

the spin statistics theorem, in any quantum field theory we take F = 2h2. G is any

element of the subalgebra that commutes with the set set {Q,S,∆}; by a similarity

transformation , G may always be rotated in to a linear combination of the subalgebra

Cartan generators.

The Witten Index (4.65) receives contributions only from the states that are an-

nihilated by both Q and S (all other states yields contribution that cancel in pairs)

and, hence, have ∆ = 0. So it is independent of ζ. The usual arguments[2] also ensure

that IW is also an Index and hence it should be possible to expand IW as a linear

combination of the Indices defined in the previous section. In fact it is easy to check

that for any representation A (reducible or irreducible) of the d = 6 superconformal

algebra,

Iwi(A) =
∑

M1,M2,M3,{ki}

IM1,M2,M3χsub(M2,M3, ki, 4(M2 −M3) + 12M1 + 24)

+
∑

{ki},k−k1=− 3
2
,−1,− 1

2
,0

n{c(−1

2
,−1

2
,
1

2
, k, ki)}χsub(0, 0, ki, 12k + 18)

+
∑

{ki},h≥0,k−k1=−1,− 1
2
,0

(−1)2h+1n{c(h, h, h+ 1, k, ki)}χsub(0, 2h+ 1, ki, 4h+ 12k + 20)

+
∑

{ki},h1,h(h1≥h≥0),k−k1=− 1
2
,0

[
(−1)2hn{c(h1, h, h+ 1, k, ki)}

×χsub(h1 − h, 2h+ 1, ki, 4h1 + 12k + 20)] .

(4.66)

where χsub(H1, H2, Ki, E) is the supercharacter of the representation with highest
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weights H1, H2, Ki, E as defined in (4.64). In the first sum in (4.66) M2 and M3 run

over integers greater than or equal to zero and M1 runs over integers or half integers

with M1 ≥ M3

2
+ k1. Also the set {ki} runs over integer and half integer values

satisfying the condition k1 ≥ k2 · · · ≥ kn. In order to obtain (4.66) we have used,

Iwi[(c(h1, h2, h3,k, ki)(with h1 ≥ h2 ≥ |h3| and k ≥ 0)] =

(−1)2h2+1χsub(h1 − h2, h2 + h3, ki, 4(h1 + h2 − h3) + 12k + 24).

(4.67)

Iwi[(c(h1, h, h+ 1, k, ki)(with h1 ≥ h ≥ 0 and k ≥ −1

2
)] =

(−1)2h+1χsub(h1 − h, 2h+ 1, ki, 4h1 + 12k + 20).

(4.68)

Iwi[(c(h, h, h+ 1, k, ki)(with h ≥0 and k ≥ −1)] =

(−1)2h+1χsub(0, 2h+ 1, ki, 4h+ 12k + 20).

(4.69)

Iwi[(c(−1

2
,−1

2
,
1

2
, k, ki)(with k ≥ −3

2
)] = χsub(0, 0, ki, 12k + 18). (4.70)

Equations (4.67)-(4.70) follow from the observation that the set of ∆ = 0 states (the

only states that contribute to the Witten Index) in any short representation of the

superconformal algebra transform in a single representation of the commuting super

subalgebra. The quantum numbers of these representations of the subalgebra are

easily determined, given the quantum numbers of the parent short representation. In

the case of regular short representations, a primary of the subalgebra representation

(in which the ∆ = 0 states transform) is obtained by acting on the highest weight

primary of the full representation (which turns out to have ∆ = 6) with supercharges
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Q1, Q2 and Q3 with quantum numbers (h1 = 1
2
, h2 = 1

2
, h3 = 1

2
, k = 1

2
, ki = 0, ε0 = 1

2
),

(h1 = 1
2
, h2 = −1

2
, h3 = −1

2
, k = 1

2
, ki = 0, ε0 = 1

2
) and (h1 = −1

2
, h2 = 1

2
, h3 = −1

2
, k =

1
2
, ki = 0, ε0 = 1

2
) respectively, all of which have ∆ = −2. The Witten Index evaluated

over these representations in terms of the supercharacter of the subgroup is given by

(4.67).

In the case of isolated representations the highest weight primary of the full rep-

resentation turns out to have ∆ = 4, 2 and 0; for the ∆ = 4 case the primary of the

subalgebra is obtained by the action of Q1 and Q2 on the primary of the full super-

conformal algebra, and for ∆ = 2 case it is obtained by the action of Q1. The highest

weight of an isolated superconformal short which itself has ∆ = 0 is also a primary of

the commuting subalgebra. The Witten Index evaluated over these representations

in terms of the supercharacter of the subgroup is given by (4.68), (4.69) and (4.70).

Note that every Index that appears in the list of subsection §§4.3.4 appears as the

coefficient of a distinct subalgebra supercharacter in (4.66). As supercharacters of dis-

tinct irreducible representations are linearly independent, it follows that knowledge of

IW is sufficient to reconstruct all superconformal Indices of the algebra. In this sense

(4.66) is the most general Index that can be constructed from the superconformal

algebra alone.

4.3.7 The Index over M theory multi gravitons in AdS7 × S4

We now compute the Witten Index defined for the for the world volume theory of

the M5 brane in the large N limit. The R-symmetry for this algebra is SO(5) corre-

sponding to rotations in the 5 directions transverse to the brane. This is consistent
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with the formalism above because SO(5) ∼ Sp(4). We will use the symbols l1, l2 to

represent the SO(5) Cartans in the orthogonal basis. The Sp(4) Cartans are given

by:

k =
l1 + l2

2
, k1 =

l1 − l2
2

(4.71)

Note, also that the bosonic part of the commuting subalgebra is SU(3, 1)⊗Sp(2). In

the calculation below, we will us the equivalence Sp(2) ∼ SU(2). The SU(2) charge

is the same as the Sp(2) charge.

In the strict large N limit, the spectrum of this theory is the Fock space of super-

gravitons of M theory on AdS7 × S4 [1, 57].20 The set of primaries for the graviton

spectrum is (ε0 = 2p, l1 = 2p, l2 = 0, h1 = 0, h2 = 0, h3 = 0) [67]21, where p can

be any positive integer. Now given a highest weight state, we again use the Racah

Speiser algorithm to obtain the representations (of the maximal compact subgroup)

occurring in the supermultiplet. The result is enumerated in table 4.3 and agrees

with [67]. By the action of momentum operators on this states we can build up the

entire representation of the superconformal algebra.

It is now again simple to compute the Index over single gravitons once we have

the spectrum. The Witten Index for the pth graviton representation (Rp)(i.e. for a

particular value of p in the primary), is obtained by

20The Index we will calculate is sensitive to 1
16 BPS states. However, the 1

4 BPS partition function
has been calculated, even at finite N , in [58]

21we specify the highest weight of the maximal compact subgroup; ε0 being the SO(2) charge, l1
and l2 being the SO(5) charges in orthogonal basis and h1, h2 and h3 being the SO(6) charge also
in the orthogonal basis

22The ‘+’ appears because the conformal representation we subtract is, itself short. See [6] for
details.
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Table 4.3: d=6 graviton spectrum

range of p ε0[SO(2)] SO(6)[orth.] SO(5)[orth.] ∆ contribution

p ≥ 1 2p (0, 0, 0) (p, 0) 0 +
p ≥ 1 2p+ 1

2
(1

2
, 1

2
, 1

2
) (2p−1

2
, 1

2
) 0 +

p ≥ 1 2p+ 1 (1, 1, 1) (p− 1, 0) 2 +
p ≥ 2 2p+ 1 (1, 0, 0) (p− 1, 1) 0 +

p ≥ 2 2p+ 3
2

(3
2
, 1

2
, 1

2
) ( (2p−3)

2
, 1

2
) 2 +

p ≥ 2 2p+ 2 (2, 0, 0) (p− 2, 0) 4 +
p ≥ 3 2p+ 3

2
(1

2
, 1

2
,−1

2
) (2p−3

2
, 3

2
) 0 +

p ≥ 3 2p+ 2 (1, 1, 0) (p− 2, 1) 2 +

p ≥ 3 2p+ 5
2

(3
2
, 1

2
,−1

2
) ( (2p−5)

2
, 1

2
) 4 +

p ≥ 3 2p+ 3 (1, 1,−1) (p− 3, 0) 6 +
p ≥ 4 2p+ 2 (0, 0, 0) (p− 2, 2) 2 +
p ≥ 4 2p+ 5

2
(1

2
, 1

2
, 1

2
) (2p−5

2
, 3

2
) 4 +

p ≥ 4 2p+ 3 (1, 0, 0) (p− 3, 1) 6 +
n ≥ 4 2p+ 7

2
(1

2
, 1

2
,−1

2
) (2p−7

2
, 1

2
) 8 +

p ≥ 4 2p+ 4 (0, 0, 0) (p− 4, 0) 12 +
p = 1 7

2
(1

2
, 1

2
,−1

2
) (1

2
, 1

2
) 0 −

p = 1 4 (1, 1, 0) (0, 0) 2 −
p = 1 4 (0, 0, 0) (1, 0) 2 −
p = 1 5 (1, 0, 0) (0, 0) 4 +22

p = 1 6 (0, 0, 0) (0, 0) 6 −
p = 2 6 (0, 0, 0) (1, 1) 2 −
p = 2 13

2
(1

2
, 1

2
, 1

2
) (1

2
, 1

2
) 4 −

p = 2 7 (1, 0, 0) (0, 0) 6 −

IWRp =Tr∆=0

[
(−1)FxEzK1yH1

1 yH2
2

]
=
∑
q

(−1)2(h2)qx(3ε0+h1+h2−h3)qχ
SU(2)
q (z)χ

SU(3)
q (y1, y2)

(1− x4y1)(1− x4y2

y1
)(1− x4

y2
)

,
(4.72)

where q runs over all the conformal representations with ∆ = 0 that appears in the

decomposition of Rp in table 4.3; x, z, y1 and y2 are the exponential of the chemical

potentials corresponding to the subgroup charges E,K1, H1 and H2 respectively as

defined in (4.64); χSU(2) and χSU(3) denote the characters of the groups SU(2) and
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SU(3) respectively, which are computed using the Weyl character formula.

The Index over the single particle states is then simply given by the following

sum,

IWsp =
∞∑
p=3

IWRp + IWR2
+ IWR1

, (4.73)

Performed this sum, we find that the single particle contribution to the Index is

IWsp =
term1 + term2

den

term1 = x6
(√

zy2
1

(
1− x8y2

)
x2 +

√
zy2

(
1− x8y2

)
x2
)

term2 = x6
(
y1

(
−
√
zx10 +

√
zy2

2x
2 +

(
x12 − 1

)
(z + 1)y2

))
den =

(√
zx12 − (z + 1)x6 +

√
z
) (
x4y1 − 1

) (
x4 − y2

) (
x4y2 − y1

)
.

(4.74)

The Index over the Fock-space of gravitons can be obtained from the above single

particle Index by the formula (4.18).

To get a sense for the formula, let us set z, yi → 1 in (4.74) leaving only x ≡ e−β.

We remind the reader that β is the chemical potential corresponding to E = 3ε0 +

h1 + h2 − h3. This leads to

IWsp (x)
∣∣
z,yi→1

=
x6 (2x4 + x2 + 2)

(x8 + x6 − x2 − 1)2 . (4.75)

We note that in the high energy limit when x → 1, IWsp in (4.75) becomes IWsp =

5
144β2 . Then by the use of (4.18) we have,

IWfock = exp
5ζ(3)

144β2
. (4.76)

Then the average value of E = 3ε0 + h1 + h2 − h3 is given by,

E = −
∂ ln IWfock
∂β

=
5ζ(3)

72β3
. (4.77)
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If we define an entropy like quantity S by

IWfock =

∫
dy exp (−βy) expSind(y), (4.78)

we find,

Sind(E) =
5ζ(3)/48

(5ζ(3)/72)
2
3

E
2
3 . (4.79)

We can also do a similar analysis with the partition function instead of the Index.

The single particle partition function evaluated on the ∆ = 0 states with all the other

chemical potentials except β set to zero is given by,

Zsp(x) = tr∆=0x
E =

−x6 (−2x8 + x6 + x2 − 2)

(1− x2)5 (x2 + 1) (x4 + x2 + 1)2 . (4.80)

The separate contributions of the bosonic and fermionic states to the partition func-

tion in (4.80) are as follows,

Zbose
sp (x) = tr∆=0 bosons =

x6 (3x10 − x6 + 2)

(1− x4)3 (1− x6)2 (4.81)

Z fermi
sp (x) = tr∆=0 fermions =

x8 (2x10 − x4 + 3)

(1− x4)3 (1− x6)2 (4.82)

An analysis similar to that done for the Index, yields for the above partition

function

lnZfock =
∑
n

Zbose
sp (xn) + (−1)n+1Z fermi

sp

n
=

7ζ(6)

2048β5
(4.83)

S(E) =
21ζ(6)/1024

(35ζ(6)/2048)
5
6

E
5
6 , (4.84)

which is again similar to that of a six dimensional gas for reasons that are similar to

those explained below equation (4.29). Note, that in this case, we have 2 transverse

supersymmetric scalars and 3 derivatives.
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4.3.8 The Index on the worldvolume theory of a single M5

brane

We will now compute our Index over the worldvolume theory of a single M5

brane. For this free theory, the single particle state content is just the representation

corresponding to p = 1 in Table 4.3 of the previous subsection. This means that it

corresponds to the representation of the d = 6 superconformal group with the primary

having charges ε0 = 2, SO(6) highest weights [0, 0, 0] and R-symmetry SO(5) highest

weight [1, 0]. Physically, this multiplet corresponds to the 5 transverse scalars, real

fermions transforming as chiral spinors of both SO(6) and SO(5) and a self-dual two

form Bµν . See [68, 61, 62] and references therein for more details. Using Table 4.3,

we calculate the Index over these states

Isp
M5

(x, z, y1, y2) = Tr
[
(−1)FxEzK1yH1

1 yH2
2

]
=
x6(z

1
2 + 1

z
1
2

)− x8
(
y2 + y1

y2
+ 1

y1

)
+ x12

(1− x4y1)
(

1− x4 y2

y1

)(
1− x4

y2

) .

(4.85)

Specializing to the chemical potentials yi → 1, z → 1, the Index simplifies to

Isp
M5

(x, z = 1, yi = 1) =
2x6 − 3x8 + x12

(1− x4)3
. (4.86)

Multiparticling this Index, to get the Index over the Fock space on the M2 brane, we

find that

IM5(x, z = 1, yi = 1) = exp
∑
n

Isp
M5

(xn, z = 1, yi = 1)

n

=
∏

n1,n2,n3

(
1− x8+4(n1+n2+n3)

)3

(1− x6+4(n1+n2+n3))
2

(1− x12+4(n1+n2+n3))
.

(4.87)

At high temperatures x ≡ e−β → 1, we find

IM5 |x→1,yi=1 = exp

{
π2

32β

}
. (4.88)
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The supersymmetric single particle partition function, on the other hand is given

by

Zsp,susy
M5

(x, z, y1, y2) = Tr∆=0

[
xEzK1yH1

1 yH2
2

]
=
x6(z

1
2 + 1

z
1
2

) + x8
(
y2 + y1

y2
+ 1

y1

)
+ x12

(1− x4y1)
(

1− x4 y2

y1

)(
1− x4

y2

) .

(4.89)

In particular, setting z, yi = 1, we find

Zsp,susy
M5

(x, z = 1, yi = 1) =
2x6 + 3x8 + x12

(1− x4)3
, (4.90)

with contributions from the bosons and fermions being

Zsp,susy,bose
M5

(x) = tr∆=0 bosonsx
E =

2x6 + x12

(1− x4)3

Zsp,susy,fermi
M5

(x) = tr∆=0 fermionsx
E =

3x8

(1− x4)3
.

(4.91)

Multiparticling this result, we find

ZM5(x, z = 1, yi = 1) = exp
∑
n

Zsp,susy
M5

(xn, z = 1, yi = 1)

n

=
∏

n1,n2,n3

(
1 + x8+4(n1+n2+n3)

)3

(1− x6+4(n1+n2+n3))
2

(1− x12+4(n1+n2+n3))
.

(4.92)

At high temperatures x→ 1, we find that

ZM5(x→ 1, z = 1, yi = 1) ≈ exp

{
45ζ(4)

512β3

}
. (4.93)

4.4 d=5

4.4.1 The Superconformal Algebra and its Unitary Repre-

sentations

In d = 5, the bosonic part of the superconformal algebra is SO(5, 2) ⊗ SU(2).

Under the SO(5)⊗ SO(2) subgroup of the conformal group the supersymmetry gen-
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erators Qi
µ i = 1, · · · , 4 and µ = ±1

2
transform as the spinors of SO(5), with charge

1
2

under SO(2). The R-symmetry group is SU(2) and µ above is an SU(2) Index.

We use k to represent the SU(2) Cartan. The SO(5) Cartans in the orthogonal basis

are denoted by h1, h2. We will use ε0 to represent the energy which is measured by

the charge under SO(2). To lighten the notation, we will use the same symbols to

represent the eigenvalues of states under these Cartans.

With these conventions the Qs have ε0 = 1
2
, k = ±1

2
and SO(5) charges:

Q1 →(
1

2
,
1

2
), Q2 → (

1

2
,−1

2
)

Q3 →(−1

2
,
1

2
), Q4 → (−1

2
,−1

2
)

(4.94)

The superconformal generators Sµi are the conjugates ofQi
µ and therefore their charges

are the negative of the charges above.

The anticommutator between Q and S is given by

{Sµi , Qj
ν} ∼ δµν

(
T ji
)
− δjiMµ

ν (4.95)

Here T ji and Mµ
ν are the SO(5, 2) and SU(2) generators respectively.

As in the previous sections, by diagonalizing this operator one can determine when

a descendant of the primary will have zero norm. Performing this analysis [7], one

finds that short representations can exist when the highest weights of the primary

satisfy one of the following conditions

ε0 =h1 + h2 + 3k + 4 when h1 ≥ h2 ≥ 0 and k ≥ 0,

ε0 =h1 + 3k + 3, when h2 = 0 and k ≥ 0,

ε0 =3k, when h1 = h2 = 0, and k ≥ 0.

(4.96)

The last two conditions give isolated short representations.
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4.4.2 Null Vectors and Character Decomposition of a Long

Representation at the Unitarity Threshold

As in the case of d = 3, 6, and as explained in the previous section the short

representations of d = 5 are also either regular or isolated. The energy of a regular

short representation is given by ε0 = h1 +h2 + 3k+ 4. Again the null states of such a

representation transform in an irreducible representation of the algebra; for h1 6= 0 6=

h2 the highest weight of the primary at the head of this null irreducible representation

is given in terms of the highest weight of the primary of the representation itself

by ε′0 = ε0 + 1
2
, k′ = k + 1

2
, h′1 = h1 − 1

2
, h′2 = h2 − 1

2
. We note that

ε′0 − h′1 − h′2 − 3k′ − 4 = ε0 − h1 − h2 − 3k − 4 = 0, which shows that the null states

also transform in a regular short representation. Thus a long representation at the

edge of this unitarity bound has the same state content as the union of ordinary and

null states of such a regular short representation. So we conclude that,

lim
δ→0

χ(h1 + h2 + 3k + 4 + δ, h1, h2, k] =χ(h1 + h2 + 3k + 4, h1, h2, k)

+ χ(h1 + h2 + 3k +
9

2
, h1 −

1

2
, h2 −

1

2
, k +

1

2
),

(with h1 ≥ h2 ≥
1

2
and k ≥ 0).

(4.97)

where χ(ε0, h1, h2, k) is the character of the irreducible representation with energy ε0,

SO(5) highest weights (in the orthogonal basis) (h1, h2) and SU(2) highest weight k.

Now when h1 ≥ 1, h2 = 0 the null states of the regular short representation

occur at level two and are characterized by a primary with the highest weights ε′0 =

ε0 + 1, k′ = k + 1, h′1 = h1 − 1, h′2 = 0. Now we note that h′1 6= 0, h′2 = 0 and
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ε′0−h′1−3k′−3 = ε0−h1−3k−4 = 0, and so we conclude that the null states of such

a type of regular short representation transform in an isolated short representation.

Thus for a long representation at the edge of such a unitarity bound we have,

lim
δ→0

χ(h1 + 3k + 3 + δ, h1, h2 = 0, k) =χ(h1 + 3k + 3, h1, h2 = 0, k)

+ χ(h1 + 3k + 4, h1 − 1, h2 = 0, k + 1).

h1 ≥ 1, k ≥ 0

(4.98)

Finally when h1 = 0 = h2 the null states of the regular short representation occur

at level four and are labeled by a primary with the highest weight ε′0 = ε0 + 2, k′ =

k+2, h′1 = 0, h′2 = 0. Here we note that h′1 = 0 = h′2 and ε′0−3k′ = ε0−3k−4 = 0,

which shows that the null states of this type of regular short representation again

transforms in an isolated short representation but the isolated short representation

encountered here is different from the one encountered in the previous paragraph.

Thus for long representations at the edge of this unitarity bound we have,

lim
δ→0

χ(3k+ δ, h1 = 0, h2 = 0, k) = χ(3k, 0, 0, k) +χ(3k+ 2, 0, 0, k+ 2), k ≥ 0. (4.99)

Thus we see that the isolated short representations (as defined in the previous

subsection) are separated from other representations with the same SO(5) and SU(2)

weights by a finite gap in energy so it is not possible to approach such representations

with long representations and therefore we do not have any equivalent of (4.98) or

(4.99) at energies near h1 = 3k + 3 (when h1 ≥ 1, h2 = 0) or near 3k (when h1 = 0 =

h2) with k ≥ 0 in both the cases.
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For use below we define the following notation. Let c(h1, h2, k) denote a regular

short representation with SO(5) and SU(2) highest weights (h1, h2) and k respec-

tively, and with ε0 = h1 + h2 + 3k + 4 (when h1 ≥ h2 ≥ 0). We now extend this

notation to include isolated short representations.

• c(h1,−1
2
, k) with h1 > 0 and k ≥ −1

2
denotes the representation with SO(5)

weights (h1− 1
2
, 0) and SU(2) quantum number k+ 1

2
and with ε0 = h1 + 3k+ 4.

• c(−1
2
,−1

2
, k) with k ≥ −3

2
denotes the representation with SO(5) weights (0, 0)

and SU(2) quantum number k + 3
2

and ε0 = 3k + 9
2
.

4.4.3 Indices

As in the previous cases of d = 3, 6 for d = 5 an Index is defined to be any linear

combination of multiplicities of short representations that evaluates to zero on every

collection of collection of representations that appears on the RHS of (4.97), (4.98)

and (4.99).We now list these Indices.

1. The multiplicities of short representations which never appear on the R.H.S of

(4.97), (4.98) and (4.99). These are c(−1
2
,−1

2
, k) for k = 0,−1

2
,−1,−3

2
and

c(h1,−1
2
, k) for all h1 > 0 and k = 0,−1

2
.

2. The complete list of Indices constructed from linear combinations of the multi-

plicities of representations that appear on the RHS of (4.97), (4.98) and (4.99)

is given by,

I
(1)
M1,M2

=

2M2∑
p=−1

(−1)p+1n{c(M1 +
p

2
,
p

2
,M2 −

p

2
)}, (4.100)
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where n{R} denotes the multiplicities of representations of type R, and the

Index label M1 and M2 are the values of h1 − h2 = h1 − p
2

and h2 + k = p
2

+ k

for every regular representation that appears in the sum above. Here M1 can

be a integer greater than or equal to zero and M2 is an integer or half integer

greater than or equal to zero.

4.4.4 Minimally BPS states: distinguished supercharge and

commuting superalgebra

We consider the special Q with charges (h1 = −1
2
, h2 = −1

2
, k = 1

2
, ε0 = 1

2
). Let

S = Q† then we have,

∆ ≡ {S,Q} = ε0 − (h1 + h2 + 3K) (4.101)

We are now interested in a partition function over states annihilated by this special

Q. Such states transform in an irreducible representation of the subalgebra of the

superconformal algebra that commutes with {Q,S,∆}. This subalgebra turns out to

be SU(2, 1). Note that unlike d = 3, 6 this subalgebra is a bosonic lie algebra, and

not a super lie algebra. In the subalgebra, we will label states by their weights under

the Cartan elements Hs
1 , H

s
2 , which are defined in terms of the Cartans of the full

algebra by:

Hs
1 = h1 − h2, Hs

2 = ε0 +
h1 + h2

2
. (4.102)

Here, h1, h2 are the Cartans of the SO(5) algebra in the orthogonal basis and ε0

represents the charge under SO(2).
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4.4.5 A Trace formula for the general Index and its Charac-

ter Decomposition

We define the Witten Index,

Iw = TrR[(−1)F exp(−ζ∆ + µG)], (4.103)

where the trace being evaluated over any Hilbert Space that hosts a reducible or

irreducible representation of the d = 5 superconformal algebra. Here G is any element

of the subalgebra that commutes with the set {S,Q,∆} and F = 2h1. It is always

possible to express G as a linear combination of the subalgebra Cartans (as given by

(4.102)) by a similarity transformation. Once again, the Witten Index is independent

of ζ.

It is easy to check that the Witten Index IW evaluated on any representation A

(reducible or irreducible) is given by,

IW (A) =
∑
M1,M2

I
(1)
M1,M2

χsub(M1,
3

2
M1 + 3(M2 + 2))

+
∑

h1(≥ 1
2

);k=− 1
2
,0

n{c(h1,−
1

2
, k)}χsub(h1 +

1

2
,
3

2
h1 + 3k +

21

4
)

+
∑

k=− 3
2
,−1,− 1

2
,0

n{c(−1

2
,−1

2
, k)}χsub(0, 3k +

9

2
)

(4.104)

with χsub(H
s
1 , H

s
2) is the character of a representation of the subgroup, with highest

weights (Hs
1 , H

s
2) in the conventions described above.

In order to obtain (4.104) we have used,

Iwi(c(h1, h2, k)) = (−1)2h2+1χsub(h1 − h2,
3

2
(h1 + h2) + 3k + 6) (4.105)

Iwi(c(h1,−
1

2
, k)) = χsub(h1 +

1

2
,
3

2
h1 + 3k +

21

4
) (4.106)
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Iwi(c(−1

2
,−1

2
, k)) = χsub(0, 3k +

9

2
) (4.107)

Note that the states with ∆ = 0 in any short representation (which are the states

that contribute to the Witten Index), may be organized into a single irreducible

representation of the subalgebra that commutes with Q. The quantum numbers of

this subalgebra representation may be determined in terms of the quantum numbers

of the parent short representation. For a regular short representation the primary of

the full representation has ∆ = 4 so the highest weight state of the representation

of the subalgebra is reached by acting on it with the supercharges Q1, Q2, Q3 with

the charges (h1 = 1
2
, h2 = 1

2
, k = 1

2
, ε0 = 1

2
), (h1 = 1

2
, h2 = −1

2
, k = 1

2
, ε0 = 1

2
),

(h1 = −1
2
, h2 = 1

2
, k = 1

2
, ε0 = 1

2
). These have ∆ = −2,−1,−1 respectively. Similarly

an isolated short representation of type c(h1,−1
2
, k) with h1 > 0 and k ≥ −1

2
has

∆ = 3 and is acted upon by Q1 and Q2 in order to reach the highest weight state

of the representation of the subalgebra. Finally the isolated short representations of

type c(−1
2
,−1

2
, k) with k ≥ −3

2
have ∆ = 0 and are themselves the highest weight

states of the representation of the subalgebra.

We finally note that every Index constructed in subsection §§4.4.3 appears as the

coefficient of a distinct subalgebra character in (4.104). Thus IW may be used to

reconstruct all superconformal Indices of the algebra which makes it the most general

Index that is possible to construct from the algebra alone.



Chapter 4: Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions 135

4.5 Discussion

In this chapter we have presented formulae for the most general superconformal

Index for superconformal algebras in 3, 5 and 6 dimensions. Our work generalizes

the analogous construction of an Index for four dimensional conformal field theories

presented in [14].

We hope that our work will find eventual use in the study of the space of su-

perconformal field theories in 3, 5 and 6 dimensions. It has recently become clear

that the space of superconformal field theories in four dimensions is much richer than

previously suspected [69]. The space of superconformal field theories in d = 3, 5, 6

may be equally intricate, although this question has been less studied. As our Index

is constant on any connected component in the space of superconformal field theories,

it may play a useful role in the study of this space.

In this chapter we have also demonstrated that the most general superconformal

Index, in all the dimensions that we have studied, is captured by a simple trace for-

mula. This observation may turn out to be useful as traces may easily be reformulated

as path integrals, which in turn can sometimes be evaluated, using either perturbative

techniques or localization arguments.

The two dimensional Index – the elliptic genus – has played an important role

in the understanding of black hole entropy from string theory. However the four

dimensional Index defined in [14] does not seem to capture the entropy of black holes

in any obvious way. It would be interesting to know what the analogous situation in

in 3 and 6 dimensions. It would certainly be interesting, for instance, if the Index for

the theory on the world volume of the M2 of M5 brane underwent a large N transition
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as a function of chemical potentials, to a phase whose Index entropy scales like N
3
2

and N3 respectively. As we currently lack a computable framework for multiple M2

or M5 branes we do not know if this happens; however see [63] for recent interesting

progress in this respect.

In this connection we also note that the Index for the weakly coupled Chern Simons

theories studied in this chapter does undergo a large N phase transition as a function

of temperature. It would be interesting to have a holographic dual description of

these phase transitions.



Chapter 5

Supersymmetric States in

AdS3/CFT2 I : Classical Analysis

5.1 Introduction

In the AdS/CFT correspondence, the duality between gravity on AdS3 and a 2

dimensional conformal field theory has a special place. In fact, to date, almost all

black hole entropy calculations may be formulated as calculations in AdS3/CFT2 (this

excludes some recent numerical work [70]). Second, conformal symmetry is enhanced

in 2 dimensions and this allows us to use powerful techniques from 2 dimensional

conformal field theory; we will see examples in this chapter and the next.

In this chapter, we would like to repeat the studies of supersymmetric partition

functions that we performed in higher dimensions for AdS3/CFT2. However, in con-

trast to the previous chapters, here we will take a mostly bulk viewpoint. Our effort

will be to directly obtain the 1
4

BPS partition function, at least, at low energies from

137
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the bulk; we will then compare this result with the answer from the dual CFT.

To obtain these supersymmetric partition functions from the bulk, we need to

quantize string theory in AdS3. In general, quantizing string theory in non-trivial

spacetime backgrounds remains a difficult task. However, in the past few years,

some progress has been made by approaching this problem using canonical methods

[71, 72, 73, 74, 49, 75, 50, 51]. The principle behind these studies is to first find all

classical supersymmetric solutions of string theory in a given background. One then

assumes that these solutions can be quantized independently; often this assumption

can be checked against other independent calculations.

In this chapter, we perform the first part of this programme. We will parame-

terize all classical supersymmetric brane probes moving in several backgrounds that

are related to AdS3/CFT2. These are (a) the extremal D1-D5 background, (b) the

extremal D1-D5-P background, (c) the smooth geometries proposed in [76, 77, 78]

with the same charges as the D1-D5 system and (d) global AdS3 × S3 × T 4/K3.

The physical significance of these backgrounds is as follows. The AdS/CFT

conjecture[1, 57] relates type IIB string theory on global AdS3 to the NS sector

of a 1+1 dimensional CFT on its boundary. The solutions in global AdS we find

below correspond to the 1/4 BPS sector of the CFT. The NS and R sectors of this

CFT are related by an operation called ‘spectral flow’. Performing this operation

on the supergravity solution for global AdS yields the near horizon region of one of

the solutions of Lunin and Mathur [77]. This corresponds to the specific Ramond

ground state obtained by spectrally flowing the NS vacuum. Other Ramond vacua

are described by other solutions in [77]. The zero mass BTZ black hole which is the
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near-horizon of the extremal D1-D5 geometry, on the other hand, has been argued to

be an ‘average’ over all Ramond ground states.

The ‘giant graviton’ brane probes we find comprise D1 branes, D5 branes and

bound states of D1 and D5 branes. As we make more precise in section 5.2.2 we find

that these supersymmetric probes have the property that a certain Killing vector is

tangent to the brane worldvolume at each point. Hence, given the shape of the brane

at any one point of time, one can translate it in time along the integral curves of

this Killing vector to obtain the entire brane worldvolume. The set of all solutions is

parameterized by the set of all initial shapes. This simple prescription is sufficient to

describe supersymmetric probes in all the backgrounds we mentioned above.

Surprisingly, we find that the symplectic structure on these classical solutions is

such that we can describe all the solutions above, including supersymmetric solutions

to the DBI action on the 6 dimensional D5 brane worldvolume, in a unified 1+1

dimensional framework. It is well known that the infra-red limit of the world volume

theory of a bound state of D1 branes and D5 branes, in flat space, is given by a 1+1

dimensional sigma model. However, our result which we emphasize is classical, is

valid in curved backgrounds and does not rely on taking the infra-red limit.

Now, the CFT and the theory of gravity both have a large set of parameters ( the

exact number depends on the compact manifold). When these parameters are tuned

to a particular value, we obtain the pure ‘D1-D5’ system; at another value of these

parameters, we obtain the ‘symmetric product’ description of the system.

The probes that we find are supersymmetric on a codimension 4 manifold of this

parameter space. In supergravity, this means that we need to set the background
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NS-NS fluxes and theta angle to zero to obtain supersymmetric probes.

Now, on this submanifold, the boundary theory is known to be singular because

the stack of D1 and D5 branes that make up the background can separate at no cost

in energy [79]. One may wonder then, whether the probes we find are artifacts of this

singularity, i.e, whether they merely represent breakaway D1-D5 subsystems which

can escape to infinity. In global AdS, and in the Ramond sector solution dual to global

AdS, this is not the case. In these geometries, for generic parameters, the 1/4 BPS

giant gravitons that we describe, are ‘bound’ to the center of AdS and cannot escape

to infinity. This indicates that they correspond to discrete states and not to states in

a continuum. In the boundary theory this means that they correspond to BPS states

that are not localized about the singularities of the Higgs branch. Averaging over the

Ramond vacua to produce the zero mass BTZ black hole, however, washes out the

structure of these discrete bound states and the only solutions we are left with are at

the bottom of a continuum of non-supersymmetric states.

We prove that no BPS probes survive if we turn on a small NS-NS field. This

is not a contradiction for it merely means that the 1
4

BPS partition function jumps

as we move off this submanifold of moduli space. Further investigation of this issue

in the quantum theory and of protected quantities, like the elliptic genus and the

spectrum of chiral-chiral primaries is left to the next chapter.

Giant gravitons in AdS3 have been considered previously [80, 81, 77, 82] and it

was noted that regular 1/2 BPS brane configurations exist only for specific values of

the charges. These are precisely the values at which the giant gravitons we describe

can escape to ‘infinity’ in global AdS. The moduli space of 1/4 BPS giant gravitons,
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however, is far richer and this is what we will concern ourselves with in this chapter.

A brief outline of this chapter is as follows. In Section 5.2, we perform a Killing

spinor and kappa symmetry analysis to determine the conditions that D brane probes,

in the four backgrounds above, must obey in order to be supersymmetric. Using this

insight, in section 5.3 we explicitly construct supersymmetric D1 brane solutions in

these backgrounds and verify that they satisfy the BPS bound. Then, in section

5.4 we show how bound states of D1 and D5 branes(represented by D5 branes with

gauge fields turned on in their worldvolume) can also be described in the framework

of section 5.3. In section 5.5 we discuss the effect of turning on background NS-NS

fluxes. In section 5.6 we discuss the quantization of probes moving in the near horizon

region of the D1-D5 background. In section 5.7, we conclude with a summary of our

results and their implications.

5.2 Killing spinor and kappa symmetry analysis

We consider type IIB superstring theory compactified on S1×K where K is T 4 or

K3. We will concentrate on the case of T 4, unless otherwise stated. Let us parameter-

ize S1 by the coordinate x5, T 4 by x6, x7, x8, x9 and the noncompact spatial directions

by x1, x2, x3, x4. We will use coordinate indices xM ,M = 0, 1, . . . , 9; xm,m = 1, 2, 3, 4;

xa or xi, a, i = 6, 7, 8, 9. We will parameterize the 32 supersymmetries of IIB theory

by two real constant chiral spinors ε1 and ε2, or equivalently by a single complex chiral

spinor ε = ε1 + iε2.

In Section 5.2.1 we will review the preserved supersymmetries, or the Killing

spinors, of the backgrounds (a) D1-D5, (b) D1-D5-P, (c) Lunin-Mathur geometries
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and (d) Global AdS3 × S3. In Section 5.2.2 we will describe the construction of

supersymmetric probe branes, using a kappa-symmetry analysis, which preserve a

certain subset of the supersymmetries of the background geometry.

5.2.1 Review of supersymmetry of the backgrounds

SUSY of D1-D5 and D1-D5-P in the Flat space approximation

We first consider the D1-D5 system, which consists of Q1 D1 branes wrapped on

the S1 and Q5 D5 branes wrapped on S1×T 4. Let us first compute the supersymme-

tries of the background ignoring back-reaction. In this approximation we regard the

Q1 D1 branes and the Q5 D5 branes as placed in flat space. The residual supersym-

metries of the system can be figured out in the following way. A D1 brane wrapped

on the S1 preserves the supersymmetry 1

Γ0̂Γ5̂ε = −iε∗. (5.1)

Similarly, a D5 brane wrapped on S1 × T 4 preserves the supersymmetry

Γ0̂Γ5̂Γ6̂Γ7̂Γ8̂Γ9̂ε = −iε∗. (5.2)

The above equations can be derived by considering the BPS relations arising from IIB

SUSY algebra or by considering the κ-symmetry condition on the DBI description of

a D1 or D5 brane. A combined system of D1 and D5 branes will therefore preserve

eight supersymmetries given by ε’s which satisfy both (5.1) and (5.2).

1 We will denote by ΓM̂ the flat space Gamma-matrices satisfying [ΓM̂ ,ΓN̂ ] = 2ηM̂,N̂ , By contrast,

Gamma matrices in a curved space, ΓM will defined by ΓM = ΓM̂e
M̂
M where eM̂ are the vielbeins.

In the flat space approximation, ΓM = ΓM̂ .
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For later reference, we set up some notation. The eight residual supersymmetries

of the D1-D5 system can be described as satisfying either

Γ6̂Γ7̂Γ8̂Γ9̂ε = ε,Γ0̂Γ5̂ε = −ε, ε = iε∗ (5.3)

or

Γ6̂Γ7̂Γ8̂Γ9̂ε = ε,Γ0̂Γ5̂ε = ε, ε = −iε∗. (5.4)

The two conditions above are called left- and right-moving supersymmetries, respec-

tively. Thus the D1-D5 system has (4,4) (left,right) supersymmetries.

D1-D5-P

If we add to the D1-D5 system P units of left-moving momentum along the S1, the

resulting D1-D5-P system has (0,4) supersymmetry (defined by (5.4)), in the notation

of the previous paragraph.2 In the flat space limit and for non-compact x5, a left-

moving momentum can be seen as arising from applying an infinite boost to the D1-D5

system in the t-x5 plane. It is easy to see that the right-moving supersymmetries are

invariant under such a boost while the left-moving supersymmetries are not. Since

the supersymmetry conditions are local, the argument can be extended to the case

where x5 is compact.

SUSY of the full D1-D5 and D1-D5-P geometry

It has been assumed above that the Q1 D1 branes and Q5 D5 branes are in flat

space. For Q1, Q5 large, the metric, dilaton and the RR fields get deformed. The

2We adopt the slightly unusual terminology that a wave rotating counterclockwise on the S1 is
left-moving.
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modified background geometry, applying standard constructions, is given by the ‘D1-

D5’ geometry, described in Table (5.1) (in Section 5.3.2). This geometry should be

thought of as describing an ‘ensemble’ rather than any particular microstate of the

D1-D5 system. In case of the D1-D5-P the backreacted metric is given in (5.50) (the

dilaton and RR fields are given by Table (5.1)).

To analyze unbroken supersymmetries of these backgrounds and the others to

follow, we need to solve the Killing spinor equations in these backgrounds. These

Killing spinors were considered, in fact for a much larger class of metrics, in [83, 84].

We quote the results of this analysis here, with a very brief introduction. The details,

for each case, may be found in Appendix D of [85].

In case of the D1-D5 geometry and the other geometries we consider below, the

metric may always be written in terms of vielbeins, as:

ds2 = −(et̂)2 + (e5̂)2 + em̂em̂ + eâeâ. (5.5)

The coordinate indices are as explained in the beginning of Section 5.2. The (̂)

represents a flat space index (vielbein label). Spinors are defined with respect to a

specific choice of vielbeins and they transform in the spinorial representation under a

SO(1, 9) rotation of the vielbeins. The precise form of the vielbein, in the geometries

we consider, may be found in Appendix A of [85]

Finding the residual supersymmetries of a particular background amounts to solv-

ing the Killing spinor equations. The analysis in Appendix D of [85] tells us that (5.1),

(5.2) continue to describe the supersymmetries of the D1-D5 geometry, while (5.4)

continues to describe the supersymmetries of the D1-D5-P geometry.
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SUSY of Lunin-Mathur geometries

It was explained in a sequence of papers [86, 87, 76, 77, 78] that the geometry of

Table 5.1 should be treated as an ‘average’ over several allowed D1-D5 microstates.

The gravity solution dual to any particular Ramond groundstate was described by

Lunin and Mathur [76, 77]. The analysis of [83, 84] and Appendix D of [85] shows

that even these solutions preserve the supersymmetries given by (5.1) and (5.2).

SUSY of Global AdS3 × S3 × T 4

Type IIB string theory on global AdS3 is dual to the NS sector of the CFT on

the boundary. If we take the geometry to be AdS3×S3×T 4, the boundary CFT has

(4, 4) superconformal symmetry. We will describe these supersymmetries below.

Global AdS3 × S3 is described by the metric

ds2 = − cosh2 ρdt2 + sinh2 ρdθ2 + dρ2 + cos2 ζdφ2
1 + sin2 ζdφ2

2 + dζ2. (5.6)

Here, we will find the killing spinors of this background using an alternative method,

due to Mikhailov [41], which is quite illuminating. The reader will find an alternate

derivation in Appendix E of [85].

The metric (5.6) arises by embedding (a) AdS3 in flat R2,2 by the equations

X−1 = cosh ρ cos t, X0 = cosh ρ sin t, X1 = sinh ρ cos θ, X2 = sinh ρ sin θ and (b)

S3 in flat R4 by the equations Y 1 = cos ζ cosφ1, Y 2 = cos ζ sinφ1, Y 3 = sin ζ cosφ2,

Y 4 = sin ζ sinφ2. We can therefore regard AdS3× S3× T 4 as embedded in R2,10 as a

codimension two submanifold.

Now consider R2,10 spinors that are simultaneously real and chiral. Regard R2,10

as a product of R2,2(⊃ AdS3), R4(⊃ S3), and R4 (which we compactify to get the
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T 4). The spinors now should be regarded as transforming under SO(2, 2)× SO(4)×

SO(4). It is possible to consistently restrict attention to a subclass of these spinors,

namely those that are chiral under the last SO(4) (this is consistent because complex

conjugation does not change SO(4) spinor chirality). We now have a set of 16 real or

8 complex spinors. These spinors are chiral in R2,6 as well as in R4. We will denote

these spinors by χ.

Let us denote by Γ̃A, A = −1, 0, 1, .., 10 the R2,10 gamma-matrices. We define by

NAdS the vector in R2,2 which is normal to the AdS3 submanifold and by NS the

vector in R4 which is the normal to S3. The prescription of [41] is that the Killing

spinors are given by

ε =
(

1 +
(

Γ̃ ·NAdS

)(
Γ̃ ·NS

))
χ. (5.7)

where χ are the R2,10 spinors constrained as in the previous paragraph. The two

normal gamma matrices are explicitly given by Γ̃ ·NAdS = (X−1Γ̃−1 +X0Γ̃0 +X1Γ̃1 +

X2Γ̃2) and Γ̃ ·NS = X3Γ̃3 +X4Γ̃4 +X5Γ̃5 +X6Γ̃6.

5.2.2 Construction of supersymmetric probes

D1 probe in D1-D5/D1-D5-P background: flat space approximation

We first construct supersymmetric D1 brane probes in the D1-D5 background, in

the approximation described in Sec 5.2.1. Consider a probe D-string executing some

motion in this background.

In this subsection we demonstrate that this probe preserves all the right-moving

supercharges of the background (corresponding to supersymmetry transformations

(5.4)), provided its motion is such that:
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1. The vector

n =
∂

∂t
+

∂

∂x5

(5.8)

is tangent to the brane worldvolume at every point.

2. The brane always maintains a positive orientation with respect to the branes that

make up the background.

We will first prove these statements, and then return, at the end of this subsection,

to an elaboration of their meaning.

According to assumption 1 above, n is tangent to the worldvolume at every point.

A second, linearly independent, tangent vector may be chosen at each point so that

the coefficient of ∂
∂t

is zero; making this choice this normalized vector may be written

as v2 = sinα ∂
∂x5

+ cosα u where u represents a spacelike unit vector orthogonal to

x5. By assumption 2, we have sinα > 03. In general the direction of u and the

value of α will vary as a function of world volume coordinates. Although n,v2 are

linearly independent, they are not an orthonormal set since n is a null vector. We can

construct an orthonormal basis of vectors v1,v2 at each point of the world volume

by the Gram-Schmidt method, yielding

v1 = n/ sinα− v2 = 1/ sinα

(
∂

∂t
+ cos2 α

∂

∂x5

− cosα sinα u

)
. (5.9)

For the probe to preserve some supersymmetry ε we must have, at each point of the

world-volume,

Γv1Γv2ε = −iε∗. (5.10)

3When sinα is less than zero the v1 and v2 are not appropriately oriented. Also α 6= 0, because
in that case, the determinant of the induced worldsheet metric would vanish.
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The above equation is equivalent to[
Γ0̂Γ5̂ −

Γu

sinα

(
cosαΓ0̂ + (sin2 α cosα + cos3 α)Γ5̂

)]
ε = −iε∗. (5.11)

This is clearly satisfied by spinors that satisfy (5.4) since (5.4) implies that Γ0Γ5ε = ε

which ensures Γ0ε = −Γ5ε and a consequent vanishing of the coefficient of Γu above.

Note that in flat space the ΓM̂ = ΓM .4

The conditions 1 and 2, listed at the beginning of this subsection are easily solved

by choosing a world-sheet parameterization in terms of coordinates σ, τ , such that

xM = nMτ + xM(σ),

x0 = τ, x5 = x5(σ) + τ, xq = xq(σ), q = 1, 2, 3, 4, 6, 7, 8, 9 (5.12)

where x5(σ), xq(σ) are arbitrary functions, except that ∂σx5 > 0. To connect with

the earlier discussion, we identify v2 as the unit vector along sM ≡ ∂σx
M . Note that

by condition (2) above we need ∂σx5 = (n, s) > 0 which is equivalent to our earlier

condition sinα > 0. This constraint together with the periodicity of configurations

in σ, implies that
∫
dσx5(σ) = 2πRw, where R is the radius of the x5 circle, and w

is a positive integer that we will refer to as the winding number. The configurations

described in this paragraph are easy to visualize. They consist of D-strings with

arbitrary transverse profiles, winding the x5 direction w times, and moving bodily at

the speed of light in the positive x5 direction.

Eqn. (5.10) is equivalent to the κ-symmetry projection, which can alternatively

4This derivation does not work for left-moving supercharges where (5.3) implies Γ0ε = +Γ5ε.
Left moving supercharges are symmetries for D1-branes that move at the speed of light to the left
(branes whose tangent space includes (1,−1, 0, . . . 0)).
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be written as

Γε = iε∗, Γ := 1
2
ΓMN∂αx

M∂βx
Nεαβ/

√
−h

= 1
2
[Γn,Γs]/

√
−h = Γv1Γv2 , (5.13)

where h is the determinant of the induced metric on the world volume in the σ, τ

coordinates above. In the second line we have used the parameterization (5.12). This

is equivalent to (5.10) by using
√
−h = sinα|s|.

Since all we needed in the above discussion is the (0,4) supersymmetry (5.4) of

the background, the above discussion goes through unchanged for D1 probes in the

D1-D5-P background in the flat space approximation.

D1 probe in D1-D5/D1-D5-P background

We now consider the curved D1-D5-P background, described in (5.50). The spe-

cialization to the D1-D5 background is straightforward (we just need to put rp = 0).

We will show that (5.12), or equivalently, the condition that n = ∂t + ∂5 is tangent

to the world volume, again ensures the appropriate supersymmetry of the probe. For

this, we need to show that (5.13) is valid in this background. We find that (see,

(5.45))

√
−h = Ẋ ·X ′ ≡ n · s = x′5(g05 + g55),

Γε = 1/(2
√
−h)[Γn,Γs]ε = 1

(g05+g55)x′5

(
Γ05x

′
5 + (Γ0 + Γ5)Γqx

′
q

)
ε. (5.14)

To show that Γε = ε we need

Γ0ε = −Γ5ε,

(g05 + g55)−1 (Γ0Γ5) ε = ε. (5.15)
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The first line is equivalent to

e0̂
0Γ0̂ε = −

(
e0̂

5Γ0̂ + e5̂
5Γ5̂

)
ε. (5.16)

After explicitly inserting the vielbeins using equations (5.134) and (5.135) we are left

with

Γ0̂ε = −Γ5̂ε, (5.17)

which is equivalent to Γ0̂Γ5̂ε = ε. The second line of (5.15) gives rise to the same

condition

Γ0̂Γ5̂ε = ε, (5.18)

by using e0̂
0e

5̂
5 = g05 + g55.

Thus, we have shown that a D1 brane probe moving such that n = ∂t + ∂5 is

always tangent to the world-volume, equivalently satisfying Eqn. (5.12), preserves

the supersymmetry (5.4).

D1 probe in Lunin-Mathur background

We now show that the same condition as in the previous subsection, namely that n

should be everywhere tangent to the world-volume of the D1 brane (alternatively, that

the D1 brane embedding can be expressed as in (5.12)) is valid for supersymmetry of

D1 probes in the background (5.52), discussed in Section 5.2.1 above. This analysis

is fairly similar to the one above. In this case, Eqn. (5.14) changes to

√
−h = Ẋ ·X ′ ≡ n · s = x′5g55 + x′m(g0m + g5m). (5.19)
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Hence

Γε = 1/(2
√
−h)[Γn,Γs]ε

= (x′5g55 + x′m(g0m + g5m))
−1

(
Γ05x

′
5 +

1

2
x′q[(Γ0 + Γ5),Γq]

)
ε

= (x′5g55 + x′m((g0m + g5m))
−1

×
(
Γ0̂5̂x

′
5g55 + x′q((g0q + g5q)− Γq(Γ0 + Γ5)

)
ε) (5.20)

Thus, if Γ0̂5̂ε = ε, as in (5.4), (which also implies (Γ0 + Γ5)ε = 0, using e0̂
0 = e5̂

5), the

expression (5.20), evaluates to Γε = ε. For spinors satisfying (5.4) this also implies

Γε = iε∗ which is the kappa-symmetry projection condition. In the last step of (5.20)

we have used

Γ05 = g55Γ0̂5̂,
1

2
[Γ0+Γ5,Γm] =

1

2
{Γ0+Γ5,Γm}−Γm(Γ0+Γ5) = (g0m+g5m)−Γm(Γ0+Γ5)

D1 probe in Global AdS3 × S3

We will use the description of supersymmetries of the background as in Section

5.2.1. We will show in this section that D1 strings with world volumes, to which

n = ∂t + ∂θ + ∂φ1 + ∂φ2 (5.21)

is everywhere tangent, preserve 4 supercharges.

We will first mention the geometric significance of n. Let us group the R2,6 (see

Section 5.2.1) coordinates into complex numbers as X−1 + iX0, X1 + iX2, Y 1 + iY 2,

Y 3+iY 4. This defines a complex structure I on R2,6. In Section 5.2.1, we have defined

NAdS as the normal to AdS3 in R2,2 and NS as the normal to S3 in R4. It is easy

to check that the complex partner of NAdS is I(NAdS) = −∂t − ∂θ, which generates
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(twice) the right-moving conformal spin 2hr. Similarly, the complex partner of NS is

I(NS) = ∂φ1 + ∂φ2 , which generates (twice) the z component of angular momentum

in the right moving SU(2) (out of SO(4) = SU(2)× SU(2)). The vector n therefore

generates, −2(hr − Jr). 5.

Note, first, that n is a null vector (its two components are, respectively, unit

timelike and unit spacelike vectors). Let ns = K(∂θ + ∂φ1 + ∂φ2) (the purely spatial

component of n) with the normalization K chosen to give ns unit norm. Consider

a positively oriented purely spatial vector v2 at a particular point p on the string at

constant time. We may decompose v2 as

v2 = sinαns + cosαu, (5.22)

where u is some purely spatial unit vector orthogonal to ns. Let us assume that the

string evolves in time so that the vector n is always tangent to its world volume. It

follows that, at the point P , the world volume of the string is spanned by n and v2.

These two vectors are not orthogonal, but it is easy to check that with

v1 =
n

sinα
− v2, (5.23)

{v1,v2} form an orthonormal set, with the first vector timelike. The D-string pre-

serves those supersymmetries of (5.7), that satisfy:

Γ̃v1Γ̃v2ε = ε. (5.24)

Before proceeding further, let us introduce some terminology. Consider a complex

vector u, say X1 + iX2. A spinor that is annihilated by Γ̃u is said to have spin −

5It is not difficult to check that 2hL−2jL is generated by the vector field n′ = −∂t+∂θ−∂φ1 +∂φ2 .
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under rotation in the X1-X2 plane, while a spinor annihilated by Γ̃ū has positive

spin (consequently, the spin operator is iΓ̃1Γ̃2), with similar definitions for the other

directions. Let us now consider constant spinors χ whose spins(eigenvalues under this

‘spin’ operator) in R2,2 and R4, respectively, are (++)(−−) or (−−)(++). The spins

in T 4 could be either (++) or (−−) – this gives a total of 4 spinors – or two sets of

complex conjugate pairs of spinors. We will now demonstrate that any giant graviton

whose world volume tangent space contains the vector (5.21) preserves all 4 of these

supersymmetries.

To avoid cluttering the notation below, we define:

Γ̃AdS = Γ̃ ·NAdS, Γ̃S = Γ̃ ·NS, Γ̃I(NAdS) = Γ̃ · I(NAdS), Γ̃I(NS) = Γ̃ · I(NS). (5.25)

Now consider

A = (Γ̃v1Γ̃v2 − 1)(1 + Γ̃AdSΓ̃S)χ

=

(
1

sinα
Γ̃n − Γ̃v2

)
Γ̃v2

(
1 + Γ̃AdSΓ̃S

)
χ−

(
1 + Γ̃AdSΓ̃S

)
χ

= − 1

sinα
Γ̃v2Γ̃n

(
1 + Γ̃AdSΓ̃S

)
χ

= − 1

sinα
Γ̃v2Γ̃I(NS)

[(
1 + Γ̃I(NS)Γ̃I(NAdS)

)(
1 + Γ̃AdSΓ̃S

)]
χ

= − 1

sinα
Γ̃v2Γ̃I(NS)

(
1 + Γ̃I(NS)Γ̃I(NAdS)

) [
1 + Γ̃I(NS)Γ̃I(NAdS)Γ̃AdSΓ̃S

]
,

(5.26)

where we have used Γ̃2
I(NS) = 1 = −Γ̃2

I(NAdS).

It is now relatively simple to check that (5.26) vanishes when χ is any of the

four spinors (++)(−−)(++), (++)(−−)(−−), (−−)(++)(++), (−−)(++)(−−). 6

Recall that a positive spin is annihilated by Γ̃S − iΓ̃I(NS) and by the equivalent AdS

6The first and second of these spinors are Qs while the third and fourth of these are complex
conjugate Ss.
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expression. Using Γ̃2
S = −Γ̃2

AdS = 1 we find

Γ̃AdSΓ̃I(NAdS)χ(++)(..) = +iχ(++)(..),

Γ̃SΓ̃I(NS)χ(..)(++) = −iχ(..)(++),

Γ̃AdSΓ̃I(NAdS)χ(−−)(..) = −iχ(−−)(..),

Γ̃SΓ̃I(NS)χ(..)(−−) = +iχ(..)(−−),

(5.27)

from which (5.24) follows for all the spinors listed above.

We conclude that any D1 brane world volume, to which the vector n is always

tangent, preserves the 4 supersymmetries listed above. The same is true of a D5-brane

world volume that wraps the 4-torus.

D1-D5 bound state probe

Now, we consider D5 branes that wrap the 4-torus, and move so as to keep the

vector n tangent to their worldvolume at all points, but also have gauge fields on their

worldvolume. These gauge fields, in a configuration with non-zero instanton number,

can represent bound states of D1 and D5 branes. Our analysis here is valid for all

four backgrounds considered above.

Consider a D5 brane with a non-zero 2-form BI field strength F , that wraps the

S1 × T 4. We denote the world-volume coordinates by

σα = σ1,2,6,7,8,9 ≡ {τ, σ, z1, z2, z3, z4}.

The embedding of the world volume, as before, will be denoted by xM(σα) and the

induced metric, by hαβ = GMN∂αX
M∂βX

N . For a non-degenerate world-volume (det

h 6= 0) the tangent vectors ∂αx
M are linearly independent and provide a basis for the
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tangent space at each point of the world-volume. It is clearly possible to introduce

an orthonormal (in the spacetime metric GMN) basis of six vectors vα̂, related to the

∂αx
M by ∂αx

M = eα̂αvα̂ such that

GMNvMα̂ vN
β̂

= η̃α̂β̂.

The invertible matrix eα̂α defines 6-beins of the induced metric:

hαβ = GMN∂αX
M∂βX

N

= GMNe
α̂
αe

β̂
βv

M
α̂ vN

β̂
= η̃α̂β̂e

α̂
αe

β̂
β. (5.28)

Here η̃ is 6 dimensional and α, β run over the worldvolume coordinates. We will define

below

γα̂ = vMα̂ ΓM .

We take v1,v2 to be the same as in the previous subsections. The other four vectors

point along the internal manifold, vi ∝ ∂
∂xi
, i = 6, 7, 8, 9.

The condition for branes with worldvolume gauge fields to be supersymmetric was

considered in [88, 89]. Using the two component notation for spinors

ε =

 ε1

ε2

 , (5.29)

the BPS condition is (see Eqn. (13) of [89])

Rγ1̂2̂6̂7̂8̂9̂ε = ε,

R =
1√

− det{η̃α̂β̂ + Fα̂β̂}

∞∑
n=0

(−1)n

2nn!
γα̂1β̂1...α̂nβ̂nFα̂1β̂1

...Fα̂nβ̂nσ
n+1
3 iσ2, (5.30)

where we have expressed the world-volume gauge fields in the local orthonormal frame:

Fαβ = Fα̂β̂e
α̂
αe

β̂
β. Note, that the product in (5.30), terminates at n = 3 because the
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indices are anti-symmetrized. From the n = 0 term we find, using the analysis of the

previous subsections that the condition (5.30) can be met only for spinors that obey

(5.4). The spinors (5.4) are eigenspinors of σ1. Since iσ2 appears in the n = 1 term,

this term must vanish. Hence, the gauge fields must be of the form

F1̂2̂ = 0, F1̂̂i = −F2̂̂i, Fîĵ = εk̂l̂
îĵ
Fk̂l̂. (5.31)

For a gauge field of this kind, the determinant above is calculated in (5.75) and√
− det{η̃α̂β̂ + Fα̂β̂} = 1 +

FîĵF
îĵ

4
.

The n = 2 term gives us the right factor in the numerator to cancel this and the

n = 3 term vanishes as a virtue of (5.31).

In the world-volume curved basis, our result implies (see (5.9), (5.23)) that

F = Fσidσ ∧ dxi +
1

2
Fijdx

i ∧ dxj, (5.32)

and is self-dual on the torus, i.e

Fijε
ij
kl = Fkl. (5.33)

For ‘wavy instantons’ where the gauge fields depend on σ and the field strength is of

the form (5.32), the Gauss law and equation (5.33) are enough to gaurantee that F

solves the equations of motion [90].

The form of F in (5.32) is adequate to guarantee supersymmetry in all the four

backgrounds considered previously. For the sake of completeness, we mention that

the explicit embedding of the D5 brane in spacetime is described by the functions

XM(τ, σ, z1...4) satisfying

∂XM(τ, σ, z1...4)

∂τ
= nM . (5.34)
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In the coordinate systems that we will discuss, nM is a constant and in such a coor-

dinate system we again have:

XM(τ, σ, z1...4) = XM(σ) + nMτ. (5.35)

Using the value of n (5.8) in the D1-D5, D1-D5-P and Lunin-Mathur geometries, the

above equation translates to:

t = τ, x5 = x5(σ) + τ, xm = xm(σ), x6 = z1, . . . , x9 = z4, (5.36)

while, in global AdS3 × S3 × T 4, using (5.21), the brane motion is:

t = τ, θ = θ(σ) + τ, ρ = ρ(σ), ζ = ζ(σ), φ1 = φ1(σ) + τ, φ2 = φ2(σ) + τ,

x6 = z1, . . . , x9 = z4.

(5.37)

We are assuming, in the embedding above, that the brane wraps the internal manifold

only once. The case of multiple wrapping is identical to the case of multiple brane

probes, each wrapping the internal manifold once and is discussed in more detail in

Section 5.4.3.

The field strength above gives rise to an induced D1 charge, p, on the D5 brane

worldvolume, which is proportional to the second Chern class and is given by

p =
1

(2π
√
α′)4

∫
T 4

Tr (F ∧ F )

2
, (5.38)

and also to an induced D3 brane charge on the 2 cycles of the T 4 (which we denote

by C2 below), proportional to the first Chern class, given by

p3
C2

=
1

(2π
√
α′)2

∫
C2

Tr(F ). (5.39)
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This D5 brane configuration with worldvolume gauge fields then represents a D1-D3-

D5 bound state. This bound state has the property that whenever we wrap a D3

brane on a two-cycle, we need to put an equal amount of D3 brane charge on the

dual two-cycle. It may be surprising that a probe of this kind, with induced D3 brane

charge, is mutually supersymmetric with the D1-D5 background.

However, this fact may be familiar to the reader from another perspective. Con-

sider a configuration of Q1 D1 branes, Q5 D5 branes, Q3 D3 branes and Q′3 D3’ branes,

wrapping the 5, 56789, 567, 589 directions respectively. Following the standard BPS

analysis, of say Chapter 13 in [91], the BPS bound for this configuration is:

M ≥
√

(Q1 +Q5)2 + (Q3 −Q′3)2. (5.40)

When Q3 = Q′3, this bound becomes M ≥ Q1 +Q5 and it may further be shown that

this configuration preserves the same supersymmetries as the D1-D5 system.

Nevertheless, we will not be interested in probes with non-vanishing first Chern

class in this chapter. The AdS/CFT conjecture requires us to sum over all geometries

with fixed boundary conditions for the fields at ∞. When we consider a D1 or D5

probe, we can reduce the D1 or D5 charge in the background so that the total D1

and D5 charge remains constant at ∞. A probe with non-vanishing p3
C2

will lead to

some finite D3 charge at ∞ and turning on an anti-D3 charge in the background will

render the probe non-supersymmetric. So, such probes must be excluded from a con-

sideration of the supersymmetric excitations of the pure D1-D5 system. Henceforth,

we will set p3
C2

to zero on all 2-cycles C2 of the T 4.
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5.3 Charge Analysis: D strings

From the Killing spinor analysis above, we conclude that in all the four different

backgrounds we will consider, D-strings that move so as to keep a particular null

Killing vector field tangent to their worldvolume at each point preserve 4 supersym-

metries. This means, as we mentioned, that given the initial shape of the D-string

we can translate it along the integral curves of this vector field to generate the entire

worldvolume. In this section, we will use this fact to explicitly parameterize all su-

persymmetric D-string probes in terms of their initial profile functions. We will then

use the DBI action to calculate the spacetime momenta of these configurations and

verify the saturation of the BPS bound.

In the first subsection below, we present a general formalism that is applicable

to all the examples we consider. We then proceed to apply this formalism to the

extremal D1-D5 background, the D1-D5-P background, the smooth geometries of

[76] and finally global AdS.

5.3.1 Supersymmetric D1 Probe Solutions

We introduce coordinates, τ and σ, on the D1 brane worldvolume. We use

XM(σ, τ) to describe the embedding of the worldsheet in spacetime, with t ≡ X0

denoting time. We will use ẊM ≡ ∂XM

∂τ
and (XM)′ ≡ ∂XM

∂σ
. The special null vector,

discussed above, is denoted by nM (see also Section 5.2.2). We will always work

with the string frame metric GMN . This is the metric we use while calculating dot

products. For example, X ′ ·X ′ = GMNX
′MX ′N . The Ramond-Ramond 3 form field

strength is denoted by G
(3)
MNP and the 2 form potential is denoted by C

(2)
MN . The
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dilaton is φ. The induced worldsheet metric is hαβ = GMN∂αX
M∂βX

N . In all the

cases that we consider in this section, the NS-NS two form is set to zero.

With this notation, the bosonic part of the D1 brane action is:

S =

∫
Lbranedσdτ = − 1

2πα′

∫
e−φ
√
−hdσdτ +

1

2πα′

∫
C

(2)
MN∂αX

M∂βX
N ε

αβ

2
dσdτ,

(5.41)

where

h = Det[hαβ] = (X ′ ·X ′)(Ẋ · Ẋ)− (X ′ · Ẋ)2. (5.42)

We take ετσ = −εστ = +1. In line with the analysis presented above, we take our

solutions to have the property:

∂XM(σ, τ)

∂τ
= nM . (5.43)

In the examples in this section, we will be using a coordinate system where nM is

constant. When this happens, we may solve (5.43) via (see (5.12), (5.37))

XM(σ, τ) = XM(σ) + nMτ. (5.44)

As we explained above, the set of supersymmetric worldvolumes is parameterized by

the set of initial shapes XM(σ).

On these solutions, we find

√
−h =

∣∣∣X ′ · Ẋ∣∣∣ . (5.45)

From the action (5.41), we can then derive the momenta

PM =
∂Lbrane

∂ẊM

=
−e−φ

2πα′

[
(GMN − eφC(2)

MN)X ′N − nM
(X ′ ·X ′)
X ′ · Ẋ

]
.

(5.46)
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Since these momenta are independent of τ the equations of motion reduce to

−∂Lbrane

∂XP
=

(
∂(e−φGMN)

∂XP
+
∂C

(2)
MN

∂XP

)
(X ′MẊN − ẊMẊNX

′ ·X ′

X ′ · Ẋ
) = 0. (5.47)

Before we apply this general formalism to specific cases, we would like to make

two comments.

1. First, as noted above, we find that
√
−h = +|X ′ · Ẋ|. If we do not put the

absolute value sign, a worldsheet that folds on itself could have zero area. If

we now work out the equations of motion carefully, taking into account that

no such absolute value sign occurs in the coupling to the RR 2-form, then we

find that unless X ′ · Ẋ maintains a constant sign, our configurations are not

solutions to the equations of motion. Here, we have taken |X ′ · Ẋ| = +X ′ · Ẋ.

The other choice of sign, would have led to anti-branes which would not be

supersymmetric in the backgrounds we consider.

2. The worldsheet may be parameterized by two coordinates, σ and τ . In many of

the examples that we will consider, the vector n is a constant in our preferred

coordinate system(see, tables 5.1 and 5.2). In such cases, we may take t = τ .

Now, given the profile of the string at any fixed τ , we can translate each point

on that profile by the integral curves of n, to obtain the entire worldsheet. We

may then use σ to label these various integral curves of n.

5.3.2 Supersymmetric Solutions in the D1-D5 background

Consider Q1 D1 branes and Q5 D5 branes wrapping an internal T 4 with sides of

length 2π(α′)
1
2v

1
4 and an S1 of length 2π that we take to be along x5. Table 1 describes
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the geometry of this background. Notice that the 3-form fluxes are normalized so that

1

2π

∫
S3

G(3)

α′
= 2πQ5

1

2π

∫
S3×Mint

?10G
(3)

α′
= 2πQ1. (5.48)

If we take the near-horizon limit of the solution above, we find the geometry of AdS3

in the Poincare patch, with x5 identified on a circle. This is nothing but the zero

mass BTZ black-hole. Although the probe solutions we present below are valid in the

entire D1-D5 geometry, it will turn out that quantization of these solutions in Section

(5.6) is only tractable when the probe-branes are in the near-horizon region.

The equations of motion, (5.47) reduce, on the solutions of (5.44) to

∂(e−φG55 + C
(2)
5t )

∂XP
= 0. (5.49)

and these are manifestly satisfied since e−φG55 + C
(2)
5t = 0.

Table 5.1 explicitly lists the solutions (5.44) and the conserved charges. The RR

2-form potential in Table 5.1 has a gauge ambiguity(the coefficient b). The canonical

momenta Pφ1,2 , to begin with, depend on b; However, the momenta P̃φ1,2 appearing

in the both Table 5.1 and Table 5.2 (that deals with probe D-strings in global AdS)

are the gauge-invariant momenta which figure in the BPS relations and do not have

a gauge-ambiguity. This issue is discussed in detail in Appendix C of [85]. Note that

the gauge-ambiguity is only in the magnetic part and not in case of the electric part.

The reason is that it is possible to have a globally defined electric part of the potential

while it is impossible to do so for the magnetic part (for reasons similar to the case

of the Dirac monopole).

We now apply the general analysis presented above to obtain Table 5.1.
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Table 5.1: D1-D5 system

Geometry:

ds2 = (f1f5)−
1
2 (−dt2 + (dx5)2) + (f1f5)

1
2

(
dr2 + r2(dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2)
)

+ eφ

g
ds2

int

e−2φ = 1
g2
f5

f1
, f1 = 1 + gα′Q1

vr2 , f5 = 1 + gα′Q5

r2 , v = V
(2π)4α′2

G(3)

α′
= Q5 sin 2ζdζ ∧ dφ1 ∧ dφ2 − 2Q1

vf2
1 r

3dr ∧ dt ∧ dx5

C(2)

α′
= −Q5

2
(cos 2ζ + b)ζdφ1 ∧ dφ2 + 1

gf1α′
dt ∧ dx5

BPS Condition
E − L = −

∫
Ptdσ −

∫
P5dσ = 0

Null Vector tangent to worldvolume:
nM = ∂

∂t
+ ∂

∂x5

Solution
t = τ x5 = x5(σ) + τ r = r(σ)
ζ = ζ(σ) φ1 = φ1(σ) φ2 = φ2(σ)
zaint = zaint(σ)
Momenta:

Pt = 1
2πα′g

[
x′5
f1
−
√

f5

f1

X′·X′
x′5

]
P5 = − 1

2πα′g

[
x′5
f1
−
√

f5

f1

X′·X′
x′5

]
Pr = − 1

2πα′

[
f5

g
r′
]

Pζ = − 1
2πα′

[
f5r2ζ′

g

]
P̃φ1 = − 1

2πα′

[
f5r2 cos2 ζφ′1

g
+ Q5α′

2
[cos(2ζ)− 1]φ′2

]
P̃φ2 = − 1

2πα′

[
f5r2 sin2 ζφ′2

g
− Q5α′

2
[cos(2ζ) + 1]φ′1

]
Pza = − 1

2πα′g

[
gintab z

b′
]

(internal manifold)

5.3.3 Supersymmetric Solutions in the D1-D5-P background

The D1-D5 system above may be generalized by adding a third charge using purely

left-moving excitations which gives the ‘D1-D5-P’ system. The field strengths and

dilaton are exactly as in Table 5.1 but the metric is altered as follows:

ds2 = f
− 1

2
1 f

− 1
2

5

(
−dt2 + dx2

5 +
r2
p

r2
(dt− dx5)2

)
+

f
1
2

1 f
1
2

5

(
dr2 + r2(dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2)
)

+
eφ

g
ds2

int (5.50)
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Here r2
p = cpg

2P , where P is the quantized momentum along x5 and cp is a numerical

constant which is not important for our purpose here.

It is easy to repeat the supersymmetry analysis above, for this background. In

particular, we find that:

Pt =
1

2πα′g

[
(1 +

r2
p

r2
)
x′5
f1

−

√
f5

f1

X ′ ·X ′

x′5

]
,

P5 = − 1

2πα′g

[
(1 +

r2
p

r2
)
x′5
f1

−

√
f5

f1

X ′ ·X ′

x′5

]
,

Pt + P5 = 0.

(5.51)

The rest of Table 5.1 remains valid.

5.3.4 Supersymmetric Solutions in the Lunin-Mathur Ge-

ometries

In this subsection, we describe supersymmetric D-string probes in the smooth 2

charge geometries of Lunin and Mathur[92, 76]. The geometry is as follows

ds2 =

√
H

1 +K
[−(dt− Amdxm)2 + (dx5 +Bmdx

m)2] +

√
1 +K

H
d~x · d~x

+
√
H(1 +K)d~z · d~z,

e2φ = H(1 +K), C
(2)
tm =

−Bm

1 +K
, C

(2)
t5 =

1

1 +K
, C

(2)
m5 =

Am
1 +K

,

C(2)
mn = Cmn +

AmBn − AnBm

1 +K
, dB = − ∗ dA, dC = − ∗ dH−1,

(5.52)

where H = H(~x), A = A(~x) and K = K(~x) are three harmonic functions that are

determined by 4 ‘string-profile’ functions Fm(v) as follows:

H−1 = 1 +
1

2π

∫ 2πQ5

0

dv

|x− F (v)|2
, K =

1

2π

∫ 2πQ5

0

|Ḟ |2 dv
|x− F (v)|2

Am = − 1

2π

∫ 2πQ5

0

Ḟm dv

|x− F (v)|2
.

(5.53)
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We have added 1 to C
(2)
t5 to be consistent with our conventions where the energy of

a probe D-string infinitely far away from the parent stack of D1-D5 branes is zero.

Comparing conventions with Table 5.1, we see that the parameter g has been absorbed

into an additive shift of the dilaton and is set to 1.

The vector n = ∂
∂t

+ ∂
∂x5

is null and we choose our solutions so that this vector is

always tangent to the D-string worldvolume. We may apply the formalism of section

5.3.1 here to obtain

Pt = − 1

2πα′
(e−φGtM − C(2)

tM)(XM)′ − ntγ,

P5 = − 1

2πα′
(e−φG5M − C(2)

5M)(XM)′ − n5γ,

(5.54)

where we have defined γ = (X′)2

X′·Ẋ . We now only need to notice that nt + n5 =

0, e−φG55 − C
(2)
t5 = 0, e−φ(Gtm + G5m) + (C

(2)
tm + C

(2)
5m) = 0 to see that the BPS

condition Pt + P5 = 0 is satisfied.

We comment on the relation of these geometries to global AdS in Section 5.3.5.

5.3.5 Supersymmetric Solutions in Global AdS

We now consider a probe D1 string propagating in global AdS3×S3×Mint. This

geometry is described in Table 5.2. In particular, the metric is:

ds2 = GMNdx
MdxN

= g

√
Q1Q5

v
α′
[
− cosh2 ρdt2 + sinh2 ρdθ2 + dρ2 + dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2

]
+

√
Q1

Q5v
α′ds2

int.

(5.55)
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ds2
int is the metric on the internal manifold. g, v,Q1, Q5 are parameters that determine

the string coupling constant, volume of the internal manifold and the electric and

magnetic parts of the 3-form RR field strength according to the formulae summarized

in Table 5.2 below. We are following the notation of [93]. We parameterize the internal

manifold using the coordinate z1...4.

In terms of this coordinate system, the Killing spinor analysis of section 5.2.2 tells

us that probe branes that preserve the Killing vector

n =
∂

∂t
+

∂

∂θ
+

∂

∂φ1

+
∂

∂φ2

(i.e. branes that have n everywhere tangent to their world-volume) will preserve 4 of

the background 16 supersymmetries.

We can now proceed as above to obtain Table 5.2

Spectral Flow

The Global AdS geometry above corresponds to the NS vacuum of the boundary

CFT. The geometries considered in section 5.3.4 correspond, on the other hand to

the different Ramond ground states of this CFT. Now, the NS-sector and Ramond

sector in CFT with at least (2, 2) supersymmetry are related by an operation called

spectral flow, where the Virasoro generators Ln and R-symmetry current modes Jn

change as follows (see, e.g., [94] for a review):

LNSn = LRn + JRn +
c

24
δn,0, JNSn = JRn +

c

12
δn,0, (5.56)

and the moding of the fermions changes from integral to half-integral. c is the central

charge of the theory which, for the boundary CFT, is 6Q1Q5.
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Table 5.2: D branes in Global AdS

Geometry
ds2

α′
= l2

[
− cosh2 ρdt2 + sinh2 ρdθ2 + dρ2 + dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2

]
+
√

Q1

Q5v

ds2int

α′

e−2φ = Q5v
g2Q1

, l2 = g√
v

√
Q1Q5

G(3)

α′
= ∗G(7)

α′
= dC(2)

α′
= Q5 sin 2ζdζ ∧ dφ1 ∧ dφ2 +Q5 sinh(2ρ)dρ ∧ dt ∧ dθ

C(2)

α′
= −Q5

2
[(cos 2ζ + b)dφ1 ∧ dφ2 − (cosh(2ρ)− 1)dt ∧ dθ]

BPS Condition

E − L− J1 − J2 = −
∫

(Pt + Pθ + P̃φ1 + P̃φ2) dσ = 0
Null Vector tangent to worldvolume:
nM = ∂

∂t
+ ∂

∂θ
+ ∂

∂φ1
+ ∂

∂φ2

Solution
t = τ θ = θ(σ) + τ ρ = ρ(σ)
ζ = ζ(σ) φ1 = φ1(σ) + τ φ2 = φ2(σ) + τ
zaint = zaint(σ)
Momenta:

γ =
sinh2 ρθ

′2+cos2 ζφ
′2
1 +sin2 ζφ

′2
2 +ζ′2+ρ

′2+ 1
gα′Q5

gint
ab z

a′zb
′

cos2 ζφ′1+sin2 ζφ′2+sinh2 ρθ′

Pt = Q5

2π

[
−γ cosh2 ρ+ sinh2 ρθ′

]
Pθ = −Q5

2π

[
(−γ + θ′) sinh2 ρ

]
P̃φ1 = −Q5

2π

[
(−γ + φ′1) cos2 ζ + 1

2
(cos 2ζ − 1)φ′2

]
P̃φ2 = −Q5

2π

[
(−γ + φ′2) sin2 ζ − 1

2
(cos 2ζ + 1)φ′1

]
Pρ = −Q5

2π
ρ′

Pζ = −Q5

2π
ζ ′

Pza = −1
2πα′g

[
gintab z

b′
]

(internal manifold)

Under spectral flow, the NS vacuum maps to the Ramond vacuum with the small-

est possible U(1) charge of JR0 = −Q1Q5

2
. It was shown in [77], that in the set of

solutions (5.52), this corresponds to the profile function F1(v) = a sin(wv), F2(v) =

−a cos(wv), F3(v) = F4(v) = 0. In our conventions, a =
√
Q1Q5, w = 1

Q5
. After

choosing this profile function, we make the coordinate redefinitions

x1 = a cosh ρ sin ζ cosφ1, x2 = a cosh ρ sin ζ sinφ1,

x3 = a sinh ρ cos ζ cosφ2, x4 = a sinh ρ cos ζ sinφ2,

(5.57)

and take the near-horizon limit(i.e drop the 1 in the harmonic functions) to obtain
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the metric and 3-form field strength:

ds2 =
√
Q1Q5

[
− cosh2 ρdt2 + sinh2 ρdx2

5 + dρ2 + dζ2
]

+
√
Q1Q5

[
cos2 ζ(dφ1 + dx5)2 + sin2 ζ(dφ2 + t)2

]
+

√
Q1

Q5

dzidzi,

G3 = Q5 sinh(2ρ)dt ∧ dθ ∧ dρ+Q5 sin(2ζ)dζ ∧ (dφ1 + dx5) ∧ (dφ2 + dt).

(5.58)

The dual of the ‘spectral flow’ (5.56) on the boundary in supergravity is the coordinate

redefinition [77]

tNS = tR, θNS = (x5)R, (φ1)NS = (φ1)R + (x5)R, (φ2)NS = (φ2)R + tR. (5.59)

Under this mapping the solution above turns into global AdS! Moreover, going around

the θ circle, once in the NS sector, causes us to also go around the (φ1)NS circle to stay

at constant (φ1)R. Hence, fermions which are anti-periodic in the NS sector, become

periodic in the R sector. One may also check that the coordinate transformation

above takes:

∂

∂tR
+

∂

∂(x5)R
=

∂

∂tNS
+

∂

∂θNS
+

∂

∂(φ1)NS
+

∂

∂(φ2)NS
. (5.60)

Thus this mapping maps the null Killing vector n of the Ramond sector to the special

null Killing vector n of the NS sector. It also takes us from solutions that satisfy

E − L = 0 to solutions that satisfy E − L− (J1 + J2) = 0.

This one to one mapping between global AdS and the corresponding Lunin Mathur

solution implies that everything that we say below regarding probes in global AdS is

also true (with appropriate redefinitions) for probes in this Lunin-Mathur geometry.
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Bound States

The probe solutions, in global AdS above have a salient feature that we wish to

point out. Consider, a D-string near the boundary of AdS. Such a string can have

finite energy only if the flux through the string almost cancels its tension. Hence, it

must wrap the θ direction and we can use our freedom to redefine σ to set θ′ = w.

For such a string, if we take the strict ρ→∞ limit, we obtain

E − L =
Q5

2π

∫
γdσ

=
Q5

2π

∫ [
sinh2 ρθ

′2 + cos2 ζφ
′2
1 + sin2 ζφ

′2
2 + ρ

′2 +GabX
a′Xb′

cos2 ζφ′1 + sin2 ζφ′2 + sinh2 ρθ′

]
dσ = Q5w.

(5.61)

Thus, we notice that for strings stretched close to the boundary, the quantity E − L

must be quantized in units of Q5. If we wish to have intermediate values of E−L, our

strings are ‘bound’ to the center of AdS. In other words the moduli space of solutions

with a value of E−L other than Q5w does not include these long strings. This leads

us to believe that quantum mechanically, the quantization of these solutions would

lead to discrete states and not states in a continuum. This expectation is validated

by the analysis of the next chapter.

The ‘spectral flow’ operation discussed above tells us that a similar statement

holds in the geometry described by (5.58). There, what must be quantized in units of

Q5 is the quantity J1 + J2. On the other hand, if we consider the near-horizon of the

D1-D5 geometry (see (5.121)), which is the zero mass BTZ black hole, we find that

the various momenta become independent of the radial direction! This means that

in that background, all probes can escape to infinity. This implies that ‘averaging’

over different Ramond vacua to obtain the zero mass BTZ black hole, washes out the
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interesting structure of ‘bound-states’ that we see above.

Returning now to probes in global AdS, those probes that do not wrap the θ

direction cannot go to ρ → ∞, yet their energy shows an interesting ρ dependence.

Consider the following solution (parameterized by w, ρ0, ζ0, φ10 , θ0)

t = τ, θ(σ) = θ0, ρ(σ) = ρ0, ζ(σ) = ζ0, φ1(σ) = φ10 , φ2(σ) = wσ. (5.62)

For this solution (using w > 0 which is necessary for supersymmetry)

E = Q5w cosh2(ρ0), L = Q5w sinh2(ρ0), Pφ1 = Q5w,Pφ2 = 0. (5.63)

In this subsector, a given set of charges fixes ρ0:

sinh2 ρ0 =
L

wQ5

. (5.64)

The fact that the size of the bound state is larger for smaller w is intuitively obvious;

e.g. the size of an electron orbit is inversely proportional to its mass.

The equation (5.64) leads to an interesting result. The extremal BTZ black hole

[95] has a horizon radius:

sinh2 ρh = 4MG = 4JG/l. (5.65)

Using the values of various constants appearing in the above equation (cf. [96], p 8)

l = 2πα′
√
g(Q1Q5)1/4V −1/4,

G−1 = 2(Q1Q5)3/4V 1/4/(πα′
√
g), (5.66)

we get for the radius of the horizon

sinh2 ρh =
J

Q1Q5

. (5.67)
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We now make the following identifications:

Probe configuration BTZ
L J
w Q1

E lM + 1
We find that the horizon radius (5.67) exactly coincides with the size of the bound

state, (5.64), under the above identifications (the third identification, of energies,

follows from the second one; the extra ‘1’ on the BTZ side owes to the mass convention

used by [95] in which AdS3 space has mass −1/l).

The above agreement would appear to suggest an interpretation of the BTZ black

hole as an ensemble of bound states of Q1 D-string probes rotating around the center

of the global AdS3 background at a coordinate distance ρh, given by (5.67). Since

the AdS3 background itself is “made of” of Q1 D-strings and Q5 D5 branes, the

above configuration is well beyond the domain of validity of the probe approximation

7 and the above interpretation should be regarded as tentative. Note that probe

configurations with w < Q1 have a size larger than the black hole radius

w < Q1 ⇒ ρ0 > ρh, (5.68)

which, therefore, do not form a black hole.8 The back-reacted geometry corresponding

to such probe configurations is likely to be some smooth non-singular configurations.

The maximum allowed value of w(= Q1) corresponds precisely to a threshold for

black hole formation (ρ0 = ρh).

7This is similar to the situation with N dual giant gravitons in AdS5×S5background, at a fixed
value of the global radius ρ.

8This is similar to the situation with a star, e.g. the Sun, whose size is larger than its
Schwarzschild radius and hence does not form a black hole.



Chapter 5: Supersymmetric States in AdS3/CFT2 I : Classical Analysis 172

Classical lower bound of energy

It can be shown (see Appendix B of [85]) that, in global AdS, the set of solutions

that we have described above has an ‘energy gap’.

E = −
∫
Pt dσ ≥ Q5. (5.69)

5.4 Charge Analysis: D1-D5 bound state probes

We now consider D5 branes with gauge fields on their worldvolume. Supersym-

metric probes of this kind were discussed in Section 5.2.2. The embedding for such

branes is given by (5.35) and the gauge fields Ai(σ) are of the form that gives rise to

(5.32)

F = Fσidσ ∧ dzi +
1

2
Fijdz

i ∧ dzj. (5.70)

with the self-duality requirement (5.33)

Fij = εklijFkl. (5.71)

In this section we will obtain two results. First, we will verify the analysis of Sec-

tion 5.2.2 by a charge analysis and confirm that the above configurations are indeed

supersymmetric. Next, we will show that the canonical structure on the space of

supersymmetric solutions of the 5+1 dimensional worldvolume theory of coincident

D5 branes is identical to the canonical structure on the set of supersymmetric solu-

tions to a 1+1 dimensional theory. For a probe comprising p D1 branes and q D5

branes, this effective 1+1 dimensional theory is the theory of a D-string propagating

in the geometries discussed above but with the internal manifold T 4 or K3 replaced
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by the instanton moduli space of p instantons in a U(q) theory on T 4(or K3). This

is similar to the result [97, 98, 79] (see, e.g. [94] for a review) that the worldvolume

theory of supersymmetric D5 branes in flat space flows, in the IR, to the sigma model

on the instanton moduli space. However, our result here is for D5 branes in curved

backgrounds (discussed in Section 5.2.2) and, furthermore, the result holds (as we will

see below) as long as the DBI description is valid and we do not need to go to the IR

fixed point.

5.4.1 Classical Supersymmetric Bound State Solutions

We consider, first, a single D5 brane.9Our background has both a three form flux

G(3) = dC(2) and a seven form flux G(7) = ∗G(3) = dC(6). In all the examples we will

consider, it is possible to define a new two-form C ′(2) such that

C(6) = C ′(2) ∧ dz1 ∧ . . . ∧ dz4. (5.72)

Using this notation, the DBI action becomes

S =

∫
Ldσdτ

∏
i

dzi

= − 1

(2π)5α′3

∫
e−φ
√
−Det[Dαβ] +

1

(2π)5α′3

∫
C(2) ∧ 1

2!
F ∧ F

+
1

(2π)5α′3

∫
C ′(2) ∧ dz1 ∧ . . . ∧ dz4,

Dαβ = hαβ + Fαβ,

(5.73)

where as usual hαβ is the pull-back of the string-frame metric to the worldvolume,

Fαβ = ∂[αAβ] is the two-form field strength and Aα is the gauge potential. It is

9We will be eventually interested in the instanton moduli space only for q > 1 D5 branes since the
q = 1 case is rather subtle [79]. However, we include the calculations for q = 1 here for simplicity.
The generalization to q > 1, which is straightforward, is left to Section 5.4.3
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important to note, that we have normalized F unconventionally which accounts for

the absence of the usual 2πα′ factor. We have written the action in terms of forms

to lighten the notation, but in indices: C(2) = 1
2
C

(2)
MNdX

M ∧ dXN .

We will now formally assume that F is of the form (5.70) and write:

Dαβ =



0 hτσ 0 0 0 0

hτσ hσσ Fσ1 Fσ2 Fσ3 Fσ4

0 −Fσ1 eφ/g F12 F13 F14

0 −Fσ2 −F12 eφ/g F14 −F13

0 −Fσ3 −F13 −F14 eφ/g F12

0 −Fσ4 −F14 +F13 −F12 eφ/g


, (5.74)

where we have assumed an internal T 4 with a metric ds2
T 4 = eφ

g

∑
i dz

idzi and the

embedding (5.36) or (5.37).

The Determinant of this matrix is√
−|D| = htσ(β2 +

FijF
ij

4
) ≡ htσ(β2 +

|F |2

2
),

β =
eφ

g
.

(5.75)

Note that:

|F |2dz1 ∧ . . . ∧ dz4 = F ∧ F. (5.76)

The field strength F is derived from the gauge fields Ai via Fαβ = ∂[αAβ]. Note that

the Ai have components only along the internal manifold. Let us suppose that there

are solutions to (5.71) characterized by ‘moduli’ ζa (the solutions we are interested

in exist, actually, for q > 1, so the calculations in this section and the next are

to be understood in a formal sense till we apply these to q > 1 in Section 5.4.3).
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We can assign σ dependence to these moduli consistent with Gauss’s law [90] and

supersymmetry, thus

Ai(σ) = Ai(ζ
a(σ)). (5.77)

Although the moduli can vary as functions of σ, supersymmetry implies that they

cannot depend on τ .

To calculate the momenta, we will need the inverse of D. We have listed the

relevant components of the inverse in the appendix. Using these, we find:

PM =
δL
δ ˙XM

=
−e−φ

(2π)5α′3

(√
−DD

τβ +Dβτ

2
GMN∂βX

N − eφ∂σXN

(
C

(2)
MN

|F |2

2
+ C

′(2)
MN

))
=
−e−φ

(2π)5α′3

[(
(β2 +

|F |2

2
)GMN −

eφC
(2)
MN |F |2

2
− eφC ′(2)

MN

)
∂σX

N

−
βFσiF

i
σ + hσσ(β2 + |F |2

2
)

hτσ
nM

]
,

PAi =
δL

δ∂τAi
= − e−φ

(2π)5α′3

√
−DD

τi −Diτ

2
=
e−φβFσi
(2π)5α′3

=
1

(2π)5α′3g

∂Ai
∂ζα

∂ζα

∂σ
.

(5.78)

In the equation above, M,N run over 0 . . . 5. To obtain the conserved charges of

the action (5.73), we need to integrate the momenta above over all 6 worldvolume

coordinates. We now proceed to show that a D5 brane that keeps the vector nM

of Section 5.2 tangent to its worldvolume at all points and has a worldvolume field

strength of the form (5.32) is supersymmetric in the 4 backgrounds that we have

discussed.
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D1-D5 background

We will discuss the D1-D5 background in some detail. The calculations required

to verify supersymmetry in other backgrounds are almost identical, so we will be brief

in later subsections.

In the D1-D5 background of Table 5.1

G(3)

α′
= Q5 sin 2ζdζ ∧ dφ1 ∧ dφ2 −

2Q1

vf 2
1 r

3
dr ∧ dt ∧ dx5,

C(2)

α′
= −Q5

2
cos 2ζdφ1 ∧ dφ2 +

1

gf1α′
dt ∧ dx5,

G(7)

α′
=

(
Q1

v
sin 2ζdζ ∧ dφ1 ∧ dφ2 −

2Q5

f 2
5 r

3
dr ∧ dt ∧ dx5

)
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4,

C(6)

α′
=

(
−Q1

2v
cos 2ζdφ1 ∧ dφ2 +

1

gf5α′
dt ∧ dx5

)
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4.

(5.79)

With the definition of C ′(2) above, we have:

C ′(2)

α′
=

(
−Q1

2v
cos 2ζdφ1 ∧ dφ2 +

1

gf5α′
dt ∧ dx5

)
. (5.80)

Notice, that in the near horizon limit, we find C ′(2) = e2φ

g2 C
(2).

To check the supersymmetry condition, we explicitly calculate Pt and P5 using

(5.78).

(2π)5α′3Pt = −FσiF
i
σ

gx′5
−
e−φhσσ(β2 + |F |2

2
)

x′5
− C(2)

5t (β2 +
|F |2

2
)x′5,

(2π)5α′3P5 =
FσiF

i
σ

gx′5
+
e−φhσσ(β2 + |F |2

2
)

x′5
− (β2 +

|F |2

2
)e−φG55x

′
5,

(5.81)

where we have used that

C
′(2)
5t = β2C

(2)
5t . (5.82)

Using G00 = −G55 and e−φG55 + C
(2)
5t = 0(See Table 5.1), we see that

E − L =

∫
(Pt + P5) dτdσdz1 . . . dz4 = 0, (5.83)
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and hence, the BPS relation is satisfied.

If we integrate (5.78) to obtain the conserved charges we see that in the near-

horizon limit, where C ′(2) = e2φ

g2 C
(2), the formulae for the energy, angular momentum

and other charges are almost identical in structure to Table 5.1 except that

1

2πα′
→ 1

2πα′

(
β2v +

1

32π4α′2

∫
|F |2d4zi

)
. (5.84)

Hence, turning on the gauge fields simply renormalizes the tension according to the

‘instanton number’ (5.38).10 This equation is the precursor to the more general

(5.102).

D1-D5-P Geometry

The discussion for the D1-D5-P geometry specified by equation (5.50) is almost

identical to the one above. The only modification is that we find:

(2π)5α′3Pt = −FσiF
i
σ

gx′5
−
e−φhσσ(β2 + |F |2

2
)

x′5
−
(
C

(2)
5t + e−φG5t

)
(β2 +

|F |2

2
)x′5,

(2π)5α′3P5 =
FσiF

i
σ

gx′5
+
e−φhσσ(β2 + |F |2

2
)

x′5
− (β2 +

|F |2

2
)e−φG55x

′
5,

(5.85)

In the new background (5.50), we have e−φ(G55 + G5t) + C
(2)
5t = 0. Hence, the BPS

relation follows.

Lunin-Mathur Geometries

To check the BPS condition for bound state probes in the Lunin-Mathur geome-

tries, we need to derive an expression for C ′(2) which is defined by (5.72). At first

sight, this may seem a formidable task, but the result is quite intuitive. It may be

10 This will become the real instanton number for q > 1 in Section 5.4.3
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shown that C ′(2) is obtained by taking C(2) in (5.52) and performing the substitution

H ↔ 1
1+K

. So

C
′(2)
tm = −BmH, C

′(2)
t5 = H, C

′(2)
m5 = HAm, C ′(2)

mn = C ′mn +H (AmBn − AnBm) ,

dB = − ∗ dA, dC ′ = − ∗ d(1 +K).

(5.86)

Now, we only need to notice that C
′(2)
tM = β2C

(2)
tM , C

′(2)5M = β2C
(2)
5M , ∀M11 and repeat

the argument for the D1-D5 system above to see that Pt + P5 = 0.

Global AdS

The analysis, with gauge fields turned on in the D5 brane worldvolume is almost

identical to the analysis in the full D1-D5 background. Here, we find

C
′(2)
global

α′
=
e2φ

g2

C
(2)
global

α′
= −Q1

2v
[cos 2ζdφ1 ∧ dφ2 − (cosh(2ρ)− 1)dt ∧ dθ] . (5.87)

To check the BPS condition, let us use formula (5.78) to write down the momenta

in the t, θ, φ1, φ2 directions. In analogy to the analysis for the D-string, we define

γ1 =

1
g
FσiF

i
σ +Q5α

′
(
β2 + |F |2

2

) (
sinh2 ρθ

′2 + cos2 ζφ
′2
1 + sin2 ζφ

′2
2 + ζ ′2 + ρ

′2
)

cos2 ζφ′1 + sin2 ζφ′2 + sinh2 ρθ′
.

(5.88)

11As we mentioned earlier, the conventions of [77] differ slightly from [93] and g has been absorbed
into a shift of φ. So, here β = eφ
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with this definition, we find the momenta

(2π)5α′3Pt = −γ1 cosh2(ρ) +Q5α
′θ′ sinh2(ρ)(β2 +

1

2
|F |2),

(2π)5α′3Pθ = γ1 sinh2(ρ)−Q5α
′θ′ sinh2(ρ)(β2 +

1

2
|F |2),

(2π)5α′3P̃φ1 = γ1 cos2 ζ −Q5α
′
(
β2 +

1

2
|F |2

)(
cos2 ζφ′1 − sin2 ζφ′2

)
φ′2,

(2π)5α′3P̃φ2 = γ1 sin2 ζ +Q5α
′
(
β2 +

1

2
|F |2

)(
cos2 ζφ′1 − sin2 ζφ′2

)
φ′1,

Pt + Pθ + P̃φ1 + P̃φ2 = 0,

(5.89)

which verifies the BPS relation.

5.4.2 Obtaining an Effective Two-Dimensional Action

The space of supersymmetric solutions above, gives us a description of the super-

symmetric sector of the classical phase space of the worldvolume theory defined by

the action (5.73). Each solution corresponds to a point in this phase-space. Now,

the action (5.73) gives rise to a canonical symplectic structure on this phase space.

This structure may be encapsulated in terms of a symplectic form. See, for example

[99] for details of this construction. We will return to this formalism again in Section

5.6. We will now show that, the classical symplectic structure on the space of su-

persymmetric solutions above is identical to the symplectic structure on the space of

supersymmetric solutions of a 1+1 dimensional theory! This 1+1 dimensional theory

will be like the theory of the D-string studied in (5.3) but propagating on a different

space, where the internal manifold has been replaced by the instanton moduli space.

Furthermore, we will find that the tension of this string is renormalized by a factor

determined by the instanton number.
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First consider the gauge fields. Recall, that in (5.78), we found that

pAi =
1

(2π)5α′3g

∂Ai
∂ζα

∂ζα

∂σ
. (5.90)

The symplectic structure on the manifold of solutions may be written in terms of

the symplectic form:

Ω =

∫
δpAi ∧ δAi dσd4zi, (5.91)

where δ is an exterior derivative on the space of all solutions. δAi is then a 1-form in

the cotangent space at the point in phase space specified by the function Ai and the

wedge product is taken in this cotangent space.

The Ai are given as a function of the moduli ζa by (5.77). We can then rewrite

(5.91) as:

Ω =
1

(2π)5α′3g

∫
δ

(∫
d4zi

∂Ai
∂ζa

∂Ai
∂ζb

ζ ′a
)
∧ δζb. (5.92)

If we define a metric on instanton moduli space,

ginst
ab =

1

(2π
√
α′)4

∫
d4zi

∂Ai
∂ζa

∂Ai
∂ζb

, (5.93)

then, this is exactly the symplectic structure of the left-moving sector((ζa)′(σ, τ) =

ζ̇a(σ, τ)) of the non-linear sigma model on the instanton moduli space defined by

Sinst =
1

4πα′g

∫
ginst
ab

(
ζ̇aζ̇b − (ζa)′(ζb)′

)
dσdτ. (5.94)

What about the contribution of the gauge fields to the spacetime Hamiltonian?

From formula (5.78) and the expressions in (5.133), we see that the gauge field mo-

menta enter the expression for the spacetime energy only through

1

(2π)5α′3

∫
d4zidσ

FσiF
i
σ

g
=

1

2πα′g

∫
dσginst

ab ζ
′aζ ′b
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This is exactly the Hamiltonian of the ‘left-moving’ sector of the non-linear sigma

model (5.94).

Finally, we would like to write down an effective action that generates the sym-

plectic structure above both in the D1-D5 system and in global AdS. To do this,

first we formally extend our spacetime, by excising the coordinates on the internal

manifold and including coordinates on the instanton moduli space. We now define a

metric and B field on this extended space as follows:

χm =

XM

ζa

 ,

G1
mn =

e−φ
(
β2v +

∫
d4zi |F |2

8π2(2πα′)2

)
GMN 0

0
ginst
ab

g

 ,

B1 =

(
C
′(2)
MNv + C

(2)
MN

∫
d4zi

|F |2

8π2(2πα′)2

)
dXM ∧ dXN ,

H1
αβ = G1

mn∂αχ
m∂βχ

n.

(5.95)

In the equation above, M,N runs over 0 . . . 5, a, b run over the coordinates of the

instanton moduli space, m,n run over both these ranges and α, β range over σ, τ .

Now, consider a sector with a fixed value of the ‘instanton number’
∫
d4zi |F |2

8π2(2πα′)2

(see (5.38), also footnote 10). In this sector, consider the action:

S1
eff =

1

2πα′

∫ (
−Det[H1]

) 1
2 dσdτ +

1

2πα′

∫
B1 (5.96)

If we look for supersymmetric solutions to the action above, we will find that they

too have the property that:

∂χm

∂τ
= nm (5.97)

where we have extended the Killing vector field nM of the previous section to this
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extended space in the natural way by setting its components along ∂
∂ζa

to zero. On

these solutions, the spacetime momenta derived from the action above reproduce

the momenta (5.78). Together with (5.92) this tells us the symplectic structure on

supersymmetric solutions to the action (5.73) is the same as the symplectic structure

on supersymmetric solutions to the action (5.96). The superscript 1 above indicates

that this analysis is valid for a single D5 brane. The formula above is very suggestive

and has a natural non-Abelian extension that we now proceed to discuss.

5.4.3 Non-Abelian Extensions

The analysis in the last two subsections was valid for a single D5 brane. It is easy

to generalize the salient results to q D5 branes for q > 1. Again, we consider a sector

with fixed

p =
1

(2π
√
α′)4

∫
T 4

Tr (F ∧ F )

2
. (5.98)

p is now a bona-fide instanton number. In this sector consider the following natural

extension to the effective quantities above given by (5.95):

χm =

XM

ζa

 ,

Gp,qmn =

e−φ (qβ2v + p)GMN 0

0
ginst
ab

g

 ,

Bp,q =
(
qC
′(2)
MNv + C

(2)
MNp

)
dXM ∧ dXN ,

Hp,q
αβ = Gp,qmn∂αχm∂βχn.

(5.99)
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ζa span the moduli space of p instantons in a U(q) theory. We can define an effective

two dimensional action for each such value of p, q as:

Sp,qeff =
1

2πα′

∫
(−Det[Hp,q])

1
2 +

1

2πα′

∫
Bp,q. (5.100)

Remarkably, we have found, that we can now apply the entire machinery of section

5.3(which we developed for D1 branes) to bound-states of D1 and D5 branes.

This result takes an especially pretty form in the near-horizon of the D1-D5 and

D1-D5-P system and global AdS. Recall, that for these scenarios:

C
′(2)
MN = β2C

(2)
MN =

Q1

Q5v
C

(2)
MN . (5.101)

The formula (5.99) then tells us that in the near-horizon of the D1-D5 system and

in global AdS(and in the corresponding Ramond sector, LM geometry), the formulae

for the canonical momenta in Tables 5.1 and 5.2 are quantitatively correct with the

following substitutions:

1. The internal manifold is replaced by the instanton moduli space of p instantons

in a U(q) theory.

2. The tension of the ‘string’ is renormalized by Q5 → pQ′5 + qQ′1. Here Q′5 is the

D5-charge of the background in Table 5.1 and 5.2 which must be taken to be

Q5 − q in case the D5 charge of the probe is q (so that the total charge at the

boundary is kept fixed at Q5). Similarly Q′1 = Q1 − p. Thus

Q5 → p(Q5 − q) + q(Q1 − p) (5.102)
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5.5 Moving off the Special Point in Moduli Space

We can generalize the simplest D1-D5 system that we have been discussing by

turning on a bulk anti self-dual BNS field in the background geometry.12 This is like

turning on some dissolved D3 brane charge in the background that we have taken, till

now, to have only D1 and D5 charges. We should expect that the BPS solutions we

have been discussing above no longer remain BPS, since a D1 or a D5 probe is not,

in general, mutually supersymmetric with a D1-D3-D5 bound state (the exception is

the system considered in Section 5.2.2). In this section, we will verify the expectation

above by first performing a Killing spinor analysis and then by verifying our results

using the DBI action.

5.5.1 Killing Spinor Analysis

The explicit extremal D1-D5 supergravity background with a non-zero BNS fields

turned on was calculated in [100, 101]. We will follow [100] here. In addition to this

BNS field and the usual 3-form RR field strength G, this background also has a 5-form

field strength G(5). This solution depends on a single parameter ϕ that determines

the strength of the anti-self dual BNS field. The metric, dilaton and field strengths

(adapted to our conventions regarding ‘self-duality’, and with α′ = 1 for simplicity)

12Our conventions regarding ‘self-dual’ and ‘anti-self-dual’ are the opposite of [79, 98, 100].
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may be written as follows:

ds2 = (f1f5)−1/2
[
−dt2 + dx2

5

]
+ (f1f5)+1/2

(
dr2 + r2(dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2)
)

+ (f1f5)+1/2Z−1
[
(dx2

6 + dx2
8) + (dx2

7 + dx2
9)
]
,

e2φ =
f1f5

Z2
,

H = dBNS,

B
(2)
NS =

(
Z−1 sin(ϕ) cos(ϕ)(f1 − f5) +

(µ5 − µ1) sinϕ cosϕ

µ5 cos2 ϕ− µ1 sin2 ϕ

)(
dx6 ∧ dx8 + dx7 ∧ dx9

)
,

G(3) = cos2(ϕ)K̃(3) − sin2(ϕ)K(3),

G(5) = Z−1 cosϕ sinϕ
(

+f5K
(3) + f1K̃

3
)
∧
(
dx6 ∧ dx8 + dx7 ∧ dx9

)
,

(5.103)

where we defined

f1 = 1 +
µ1

r2
f5 = 1 +

µ5

r2
,

K̃(3) = − f
′
1

f 2
1

dr ∧ dx0 ∧ dx5 + µ5 sin(2ζ)dζ ∧ dφ1 ∧ dφ2,

K(3) = − f
′
5

f 2
5

dr ∧ dx0 ∧ dx5 + µ1 sin(2ζ)dζ ∧ dφ1 ∧ dφ2,

Z = 1 +
µ1 sin2(ϕ) + µ5 cos2 ϕ

r2
.

(5.104)

µ1, µ5 are parameters that determine the charges of the system according to the

formulae in [100]. We alert the reader that our normalizations for µ1, µ5 differ from

that paper by a factor of 2.

We start by calculating the bulk Killing spinors that this geometry preserves. As

explained earlier the supersymmetries of the type IIB theory may be written in terms

of a two-component spinor

ε =

 ε1

ε2

 , (5.105)
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which satisfies Γ11ε = −ε. The dilatino Killing spinor equation is (see [102] and

references therein)[
∂MφΓM +

1

12
HMABΓMAB ⊗ σ3

]
ε

+

[
1

4
eφ

5∑
n=1

(−1)n−1(n− 3)

(2n− 1)!
GA1...A2n−1ΓA1...A2n−1 ⊗ λn

]
ε = 0,

(5.106)

where λn = σ1 for n even, and λn = iσ2 for n odd. The {σi}, i = 1, 2, 3 are the Pauli

matrices. H and G are the NS-NS and R-R field strengths, and φ denotes the dilaton.

Our conventions are slightly different from [102] because the solution of (5.103) has

G7 = ∗G3 and G5 = − ∗G5.

The spinors above are defined with respect to a particular local Lorentz frame. In

our case, a convenient basis is defined by the following one-forms.

et̂ = (f1f5)−
1
4dt,

e5̂ = (f1f5)−
1
4dx5,

er̂ = (f1f5)
1
4dr,

eζ̂ = (f1f5)
1
4 rdζ,

eφ̂1 = (f1f5)
1
4 r cos ζdφ1,

eφ̂2 = (f1f5)
1
4 r cos ζdφ2,

eâ = (f1f5)
1
4Z−

1
2dxa.

(5.107)

Defining spinors with respect to this local Lorentz frame, we find that the Dilatino

equation becomes[
f
−5/4
1 f

−1/4
5 (f ′1 − f ′5)Γr̂

((
1− 2

f1

f5

sin2(ϕ)

α

)
1l− Γ0̂5̂ ⊗ σ1

)]
ε

−
[
f
−5/4
5 f

−1/4
1 (f ′1 − f ′5)Γr̂B

(
Γ6̂8̂ + Γ7̂9̂

)
⊗ σ3

]
ε = 0,

(5.108)
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where we defined α ≡ cos2(ϕ)+f1

f5
sin2(ϕ), B ≡

√
f1

f5

1
α

sin(ϕ) cos(ϕ) =
√
f1f5 sin(ϕ) cos(ϕ)

f5 cos2(ϕ)+f1 sin2(ϕ)
.

All products of Gamma matrices above can be simultaneously diagonalized. We will

denote the eigenvalues of Γ0̂5̂,Γ6̂8̂,Γ7̂9̂,Γr̂ζ̂φ̂1φ̂2 by ±n1,±in2,±in3,±n4 respectively.

The condition Γ11ε = −ε subjects these to the constraint
∏
n1n2n3n4 = −1.

Diagonalizing the matrix above is then equivalent to diagonalizing the two matri-

ces:

M1 = n1σ1 − iB(n2 + n3)σ3,

M2 = n4σ1 + iB(n2 + n3)σ3.

(5.109)

Both these matrices have eigenvalues ±
√

1−B2(n2 + n3)2. In particular, when

n2n3 = 1 = −n1n4, there are 8 spinors that simultaneously satisfy the two equa-

tions (
Γ0̂5̂ ⊗ σ1 +B

(
Γ6̂8̂ + Γ7̂9̂

)
⊗ σ3

)
ε =

f5 cos2 ϕ− f1 sin2 ϕ

f5 cos2 ϕ+ f1 sin2 ϕ
ε,(

Γr̂ζ̂φ̂1φ̂2 ⊗ σ1 −B
(

Γ6̂8̂ + Γ7̂9̂
)
⊗ σ3

)
ε = −f5 cos2 ϕ− f1 sin2 ϕ

f5 cos2 ϕ+ f1 sin2 ϕ
ε.

(5.110)

These two equations are consistent with Γ11ε = −ε and satisfy the equation (5.108).

They also imply Γ6789ε = ε.

Hence, we have shown that the background defined by (5.103) preserves 8 super-

symmetries that are parameterized by the projection conditions above. Notice that

none of these spinors can be preserved by a probe D1 brane or a probe D5 brane. For

arbitrary unit tangent vectors of the worldvolume v̂1, v̂2, a probe D1 brane preserves

the spinors that have Γv̂1Γv̂2 ⊗ σ1ψ = ψ. In the two dimensional space specified by

(5.105) these spinors are eigenspinors of σ1. Hence none of them coincide with the

spinors that are preserved in the background above that are eigenspinors of σ1±2iBσ3.
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The same argument works to show that no probe D5 branes or bound states of D1

and D5 branes can be supersymmetric in this background.

Now, consider the near-horizon limit of the geometry (5.103). In this limit, the

equation above simplifies dramatically and it is easy to convince oneself that the only

projection that survives above is Γ6789ε = ε. There are 16 spinors that satisfy this

equation. Hence, this is consistent with the ‘doubling’ of supersymmetries that is as-

sociated with the appearance of a conformal symmetry in the near-horizon limit. One

may now naively suspect, that in the near-horizon a probe D-string could maintain

some supersymmetries.

In the superconformal algebra, there are two types of supercharges. Convention-

ally, these are denoted by Q – with a charge under dilatation of +1
2

– and S with a

dilatation charge −1
2
. Now, to be BPS, we want a brane to preserve some Q charges

(in the superconformal algebra all primary states, whether of short representations or

not are annihilated by the S’s). To determine which supercharges are Q and which

are S in the near-horizon, we consider the r̂ component of the Gravitino equation in

the near-horizon limit.

The Gravitino equation reads[
∂M +

1

4
wBCM ΓBC +

1

8
HMABΓAB ⊗ σ3

]
ε

+

[
1

16
eφ

5∑
n=1

(−1)n−1

(2n− 1)!
GA1...A2n−1ΓA1...A2n−1ΓM ⊗ λn

]
ε = 0.

(5.111)

where wBCM is the spin connection. In the near-horizon the r component of this

equation is, for the background above:

∂ε

∂r
− 1

2r

[
Γ0̂5̂ (µ5 cos2 ϕ− µ1 sin2 ϕ)σ1 −

√
µ5µ1 cosϕ sinϕ(Γ6̂8̂ + Γ7̂9̂)⊗ (iσ2)

µ5 cos2 ϕ+ µ1 sin2 ϕ

]
ε = 0.

(5.112)
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If we impose n2n3 = 1(as the dilatino equation tells us to), the square bracket on

the right has eigenvalues ±1. Somewhat more remarkably, the eigenvalue +1 occurs

when the projection condition (5.110) is satisfied. This means that the Q’s in the

near-horizon are the same as the Q’s in the bulk. The new supercharges are the S’s.

From the argument above, we now see a D-string or a D5 brane cannot be BPS even

in the near-horizon. The argument for global AdS is very similar to the near-horizon

argument above and instead of repeating it here, we will proceed to verify our results

using a charge analysis.

5.5.2 Charge Analysis

In this section, we will use the DBI action to verify the results that we obtained

above. For global AdS, we find the interesting result that there are still solutions to

the equations of motion that preserve the Killing vector n but these solutions are no

longer BPS.

We start by considering the extremal D1-D5 geometry. From the formulae in

(5.103), we see that

C
(2)
t5 =

f5 cos2 ϕ− f1 sin2 ϕ

f1f5

,

e−φG55 =
Z

f1f5

=
f5 cos2 ϕ+ f1 sin2 ϕ

f1f5

.

(5.113)

We see that the ratio between the components of the C(2) field and the metric has

been spoilt. This effect is quite general and is the same as what we should expect if

turn on a theta angle. Now, the equation of motion (5.47) for r receives contributions

from the following terms. (1) XM = x5, XN = x5 and (2)XM = x5, X
N = τ . Since,

now e−φG55 + C
(2)
5t 6= 0, the only way to force our solutions to obey these equations
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is to set (x5)′ = 0. This confirms the expectation that, in the D1-D5 geometry, the

supersymmetric brane probe solutions vanish if we move on the moduli space. It is

easy to repeat the argument above to show that the same result also holds true in

the D1-D5-P geometry.

The situation in global AdS is more interesting. When we take the near-horizon

limit of (5.103) and translate to global coordinates, we find the metric

e−φGMNdx
MdxN = Q′5

(
− cosh2 ρdt2 + sinh2 ρdθ2 + dρ2 + dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2

)
+ dzidzi,

(5.114)

and RR 2-form components

C
(2)
φ1φ2

= −Q′5(1− ε2)
cos(2ζ)

2
,

C
(2)
tθ = Q′5(1− ε2)

cosh(2ρ)− 1

2
,

(5.115)

where

Q′5 = µ5 cos2 ϕ+ µ1 sin2 ϕ,

ε2 =
2µ1 sin2 ϕ

µ5 cos2 ϕ+ µ1 sin2 ϕ
.

(5.116)

The equation of motion for ρ now receives contributions from: (1)XM = θ,XN =

θ (2)XM = θ,XN = τ , while the equation of motion for ζ receives contributions from

(1)XM = φ1, X
N = φ1 (2)XM = φ2, X

N = φ2 (3)XM = φ1, X
N = φ2 (4)XM =

φ2, X
N = φ1. The identities we need are

e−φGθθ + C
(2)
θt = ε2Gθθ = Q′5ε

2 sinh2 ρ,

e−φGφ1φ1 + C
(2)
φ1φ2

=
Q′5
2

(1 + ε2 cos(2ζ)),

e−φGφ2φ2 + C
(2)
φ2φ1

=
Q′5
2

(1− ε2 cos(2ζ)).

(5.117)
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The equations of motion are then satisfied if

sinh 2ρθ′ = 0,

sin(2ζ)(φ′1 − φ′2) = 0.

(5.118)

The first equation requires us to stay at a constant point in θ. The second equation

requires φ′1 = φ′2. With these constraints, one can find solutions of the form (5.44) to

the equations of motion.

Unfortunately, these solutions do not maintain the BPS bound. Generalizing the

formulae of table 5.2, we find that

Pt =
−Q′5
2π

γ cosh2 ρ,

Pθ =
Q′5
2π
γ sinh2 ρ,

P̃φ1 =
Q′5
2π

(
γ cos2 ζ − φ′1 cos2 ζ − 1− ε2

2
cos(2ζ)φ′2 +

1− ε2

2
φ′2

)
,

P̃φ2 =
Q′5
2π

(
γ sin2 ζ − φ′2 sin2 ζ +

1− ε2

2
cos(2ζ)φ′1 +

1− ε2

2
φ′1

)
.

(5.119)

Substituting, φ′1 = w = φ′2, we find that

E − L− J1 − J2 = −
∫ (

Pt + Pθ + P̃φ1 + P̃φ2

)
dσ = Q′5ε

2w. (5.120)

So, the energy of these solutions increases as we move off the special submanifold

in moduli space where the anti self-dual NS-NS fluxes and theta angles are set to zero.

Equation (5.120) tells us how this happens as a function of the distance in moduli

space from the special submanifold.

5.6 Semi-Classical Quantization

The phase-space of a theory is isomorphic to the space of all its classical solu-

tions. Using the Lagrangian, we can equip this space with a symplectic form that
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we can invert to calculate Dirac brackets. Then, by promoting Dirac brackets to

commutators, we can use the set of classical solutions to canonically quantize the

theory. The advantage of this approach is that it is covariant and that it allows us to

restrict attention to special sectors of phase space by identifying the corresponding

sector of classical solutions.13 This technique has a long history and the first pub-

lished reference to it, known to us, is by Dedecker [103]. Later, this was studied in

[104, 105, 106, 107, 108]and then brought back into use in the eighties by [109, 99].

We refer the reader to [110] for a nice exposition of this method.

In this section, we will show how this procedure can be implemented for super-

symmetric brane probes propagating in the near-horizon region of the D1-D5 system.

As we explained earlier, this study has limited physical relevance because it has been

argued that the extremal D1-D5 geometry is not the dual to any particular Ramond

vacuum of the boundary CFT but should be thought of as an average over all Ra-

mond vacua. In fact, even classically, we see that our probes in global AdS have the

striking feature that they are generically bound the center of AdS. On quantization

we would expect these to give rise to ‘discrete’ states. This is in sharp contrast to

what we find by quantizing probes in the extremal D1-D5 background where all the

states that we obtain are at the bottom of a continuum. Since, the Ramond and NS

sectors of the boundary theory are related by ‘spectral flow’ on the boundary, this

bolsters the argument above that the extremal D1-D5 geometry is only an ‘average’

geometry and that we should really consider probes about the geometries described

in [76, 77, 78]

13This is valid only if the symplectic form does not mix a solution that belongs to this subset with
a solution that doesn’t.
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Nevertheless, we include this study as an example of how these supersymmetric

solutions may be quantized. A detailed study of the quantization of probes in global

AdS is left to the next chapter.

Consider the near-horizon limit of the D1-D5 system. Let us define y = α′l2

r
where

l2 is a constant defined in the next equation. In the near horizon our background is

ds2 = l2α′
(
−dt2 + dx2

y2
+
dy2

y2
+ dω2

3

)
+

√
Q1

Q5v
ds2

int,

e−2φ =
Q5v

g2Q1

,

G(3) = Q5α
′ sin(2ζ)dζ ∧ dφ1 ∧ dφ2 −

2Q5α
′

y3
dy ∧ dt ∧ dx5,

C(2) =
−Q5α

′

2
cos 2ζdφ1 ∧ dφ2 +

Q5α
′

y2
dt ∧ dx5,

l2 =
g√
v

√
Q1Q5.

(5.121)

The momentum conjugate to y is

Py = −Q5

2π

y′

y2
. (5.122)

The near horizon geometry of the background described above would have been

AdS3 in Poincare coordinates, had the D1-branes and D5-branes not been on a circle.

Adding in the circle identification, we simply get the orbifold of AdS3 by a (Poincare)

shift, i.e. the zero mass BTZ black hole.

Recall, from section 5.4, that we can treat all probes, D-strings or bound states

of p D1 branes and q D5 branes on the same footing by performing the replacements

(5.102)

Q5 → k = p(Q5 − q) + q(Q1 − p), Mint →Mp,q. (5.123)

where Mp,q is the instanton moduli space of p instantons in a SU(q) theory.
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The symplectic form, Ω on the space of solutions is given by

Ω =

∫
δPM ∧ δXM dσ, (5.124)

where δ may be thought of as an exterior derivative in the space of solutions. Recall,

the discussion in subsection 5.2.2. Apart from fixing t = τ we can use diffeomorphism

invariance to set

x5 = wσ. (5.125)

The formula for the spacetime energy becomes

E =
k

w

∫
dσ

2π

(
y′2

y2
+ cos2 ζφ′21 + sin2 ζφ′22 + ζ ′2 +

gint
ab (za)′(zb)′

kgα′

)
=
Ey + ES3 + Eint

w
.

(5.126)

Since we have fixed both t and x5, the δP5 ∧ δx5 + δPt ∧ δt terms drop out of the

symplectic form, which then becomes:

Ω =

∫ (
δPy ∧ δy + δPφ1 ∧ δφ1 + δPφ2 ∧ δφ2 + δPζ ∧ δζ + δP int

i ∧ δxi
)
dσ

= Ωy + ΩS3 + Ωint.

(5.127)

Now, if we define y = eρ, we find that

δPy ∧ δy =
−k
2π

δρ′ ∧ δρ,

Ey =
k

2π

∫
(ρ′)2dσ.

(5.128)

We can now expand ρ in modes

ρ =
1√

2k|n|
ρn exp inσ. (5.129)

This leads to the Dirac brackets and Hamiltonian

{ρn, ρ−n}D.B = i, n > 0

Ey =
∑
n∈Z

1

2
n|ρn|2.

(5.130)
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We can promote these Dirac brackets to commutators to get an infinite sequence

of harmonic oscillators. We can think of these oscillators as coming from the left-

moving part of a free boson. Roughly, the anti-holomorphic oscillators have been

set to zero by supersymmetry. Moreover, the zero modes that tie the left and right

movers together are also absent from the expression (5.130).

Now we turn to ΩS3 . We can map the S3 into an SU(2) group element using

g = ei
φ1−φ2

2
σ3eiζσ2ei

φ1+φ2
2

σ3 . (5.131)

Now, introduce light-cone coordinates on the worldsheet x± = τ ± σ. Consider the

WZW action

S =
−k
4π

∫
d2xTr{(g−1∂Mg)2}+ kΓ

SU(2)
WZ . (5.132)

where Γ
SU(2)
WZ is the standard Wess Zumino term for the SU(2) model [111]. The

symplectic form and energy obtained from the action above by restricting to solutions

that satisfy ∂+g = 0 coincides with ΩS3 and ES3 . Roughly speaking, we have the ‘left-

moving” part of the SU(2) WZW model.

The quantum WZW model has a current algebra and states in its Hilbert space

break up into representations of this algebra. Each representation is identified by its

affine primary [j] [112]. The number of affine primaries is finite and j ∈ {0, 1
2
, . . . k

2
}.

What primaries occur in the spectrum above? If we consider the limit of large k, the

WZW model describes three free bosons. If we were to quantize three bosons, X i(σ, τ),

using the symplectic form
∫
d(X i)′ ∧ dX i, we would project out all right moving

oscillators and all zero mode-motion. This suggests that the only affine primary in

the spectrum is [0].

We can obtain this result another way by using the fact that the spectrum of the
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SU(2) model comprises the affine primaries
∑k/2

j=0[j]left × [j]right. Since, here we have

restricted the right moving-sector to be trivial, the only left-moving primary that can

occur is [0].

Finally, we turn to the internal degrees of freedom that correspond to fluctuations

on the internal manifold. Just as above the symplectic form Ωint and Eint give rise

to the left-moving sector of the non-linear sigma model onMp,q. We will denote this

Hilbert space, which corresponds to the holomorphic part of the trivial zero mode

sector of the sigma model on Mp,q by H0(Mp,q).

To conclude, we have found that the quantization of D-strings in the near-horizon

of the D1-D5 system yields the left-moving part of the R×SU(2)×Mp,q sigma model

defined on a circle of length 2πw. We need to sum over all w to obtain the physical

spectrum.

The theory above is the Ramond sector of the theory of ‘long-strings’ studied

in [79, 113, 114](A closely related theory was studied in [115, 116, 117]). There,

it is shown how the R × SU(2) theory on the worldsheet may be embedded into a

spacetime N = 4 superconformal algebra with central charge 6(k − 1). The N = 4

superconformal algebra on Mp,q carries over to spacetime.

It is important to note that we do not sum over spin structures in the world-

sheet theory. The fermions are always in the Ramond sector. The second important

feature of the spectrum above is that it is at the bottom of a continuum of non-

supersymmetric states. We can always move infitesimally away from supersymmetry

by turning on the continuous momentum modes of ρ. This means that the Hilbert

space we obtained above is of measure ‘zero’ in the full quantum theory.
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5.7 Results and Discussion

In this chapter we studied brane probes in (a)the extremal D1-D5 background, (b)

the extremal D1-D5-P background, (c) the smooth geometries of Lunin and Mathur

with the same charges as the D1-D5 background and (d) global AdS3×S3× T 4/K3.

In the first three backgrounds, states that satisfy E−L = 0 preserve the right moving

supercharges. The charge −(E−L) is generated by the vector ∂
∂t

+ ∂
∂x5

and we found

that D-strings that maintained this vector tangent to their worldvolume at all points

preserved all right moving supersymmetries. The three backgrounds above preserve

8 supersymmetries and the supersymmetric probes preserve 1
2

of these. In global

AdS3× S3× T 4/K3, the right moving BPS relation is −(E −L− J1− J2) = 0. This

combination of charges is generated by the vector ∂
∂t

+ ∂
∂θ

+ ∂
∂φ1

+ ∂
∂φ2

and we found that

D strings that keep this vector tangent to their worldvolume at all points preserve 4

right moving supersymmetries (this makes them 1
4

BPS in this background). This fact

allowed us to parameterize all supersymmetric D string probes in these backgrounds

by their initial profiles. This result is summarized in equation (5.44).

D5 branes with self-dual gauge fields on their worldvolumes, that preserve the

Killing vector above, are also supersymmetric. These gauge fields correspond to a

dissolved D1 charge on the D5 worldvolume, so we interpreted supersymmetric probes

of this kind as supersymmetric bound states of D1 and D5 branes. We found that

these bound state probes could be described in a unified 1+1 dimensional framework

described by equations (5.99) and (5.100). This allowed us to treat them on the same

footing as D1 branes.

In global AdS, and the corresponding Lunin-Mathur solution, the probes we found
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could not escape to infinity for a generic assignment of charges. This indicates that

upon quantization they give rise to discrete bound states that contribute to the BPS

partition function of string theory on this background. A detailed investigation of

this is left to the next chapter. The fact that this structure of classical bound states is

not seen in the extremal D1-D5 geometry provides further evidence for the argument

that this background is not the correct dual to any Ramond vacuum in the boundary

CFT.

In Section 5.5, we showed that these supersymmetric probes vanished if we turned

on an anti-self-dual NS-NS field or theta angle. This means that the BPS partition

function jumps as we move off the special point in moduli space where these back-

ground moduli are set to zero. This issue is discussed further in the next chapter. We

note that this result is similar to the result that the 1
8

and 1
16

BPS partition functions

of N = 4 SYM theory on S3×R jump as soon as we turn on a ’t Hooft coupling but

are not further renormalized [14]. Finally, in section 5.6, we quantized the supersym-

metric probes above in the near-horizon of the extremal D1-D5 geometry to obtain

‘long-string’ states at the bottom of a continuum of non-supersymmetric states.

It would be interesting to find smooth supergravity solutions that correspond to

the probes above. It is possible that these solutions could be generated by using

the profiles we find in the programme of [76, 77]. An ensemble of energetic spinning

probes may be a useful representation of the BTZ black hole. An indication of

this was seen in Section 5.3. Now, in the probe approximation, we can have many

probes moving in AdS3 that are simultaneously supersymmetric. In global AdS our

analysis indicates that these probes would all be bound to AdS and hence exist at a
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finite distance determined by their charges. If these probes have large values of p, q,

they have many internal degrees of freedom that could give rise to a macroscopically

measurable degeneracy. This suggests the interesting possibility that there may be

multi-black hole solutions in global AdS3 × S3 × T4/K3. Similar ideas have been

proposed by de Boer [118] and Sundborg [119].

5.A Miscellaneous Technical Details

5.A.1 Inverse of the Born-Infeld Matrix

The matrix D in (5.74) is simple to invert. We will only be interested in the first

row and column, so we list those below:

√
−|D|Dτα = {−

βFσiF
i
σ + hσσ(β2 + 1

2
|F |2)

hτσ
, β2 +

1

2
|F |2,

−βFσ1 − F12Fσ2 − F13Fσ3 − F14Fσ4, F12Fσ1 − βFσ2 − F14Fσ3 + F13Fσ4,

F13Fσ1 + F14Fσ2 − βFσ3 − F12Fσ4, F14Fσ1 − F13Fσ2 + F12Fσ3 − βFσ4}√
−|D|Dατ = {−

βFσiF
i
σ + hσσ(β2 + 1

2
|F |2)

hτσ
, β2 +

1

2
|F |2,

βFσ1 − F12Fσ2 − F13Fσ3 − F14Fσ4, F12Fσ1 + βFσ2 − F14Fσ3 + F13Fσ4,

F13Fσ1 + F14Fσ2 + βFσ3 − F12Fσ4, F14Fσ1 − F13Fσ2 + F12Fσ3 + βFσ4}

(5.133)

5.A.2 Vielbeins

In this subsection, we list our vielbein conventions for the backgrounds considered

above.
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D1-D5:

The metric is given in Table 5.1. The Vielbein is defined by:

et̂ = (f1f5)−
1
4dt, e5̂ = (f1f5)−

1
4dx5, er̂ = (f1f5)

1
4dr,

eζ̂ = (f1f5)
1
4 rdζ, eφ̂1 = (f1f5)

1
4 r cos ζ, eφ̂2 = (f1f5)

1
4 r sin ζ, ea =

e
φ
2

√
g
dza.

(5.134)

D1-D5-P:

The metric is given in Equation 5.50. The Vielbein is defined by:

et̂ = (f1f5)−1/4

(1−
r2
p

r2
)

1
2dt−

r2
p

r2√
1− r2

p

r2

dx5

 , e5̂ = (f1f5)−1/4(1−
r2
p

r2
)−1/2dx5,

er̂ = (f1f5)
1
4dr, eζ̂ = (f1f5)

1
4 rdζ, eφ̂1 = (f1f5)

1
4 r cos ζ, eφ̂2 = (f1f5)

1
4 r sin ζ,

ea =
e
φ
2

√
g
dza.

(5.135)

Lunin-Mathur:

The metric is given by (5.52). The Vielbein is defined by:

et̂ =

(
H

1 +K

) 1
4 (
dt− Aîdx

î
)
, e5̂ =

(
H

1 +K

) 1
4 (
dx5 +Bîdx

î
)
,

em̂ =

(
H

1 +K

)−1/4

dxm̂, eâ = {H(1 +K)}
1
4dxâ.

(5.136)
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Global AdS:

The metric is defined in Table 5.2. The Vielbein is defined by:

et̂ = l cosh ρdt, eθ̂ = l sinh ρdθ,

eζ̂ = ldζ, eφ̂1 = l cos ζ, eφ̂2 = l sin ζ, eâ =

√
Q1

Q5v
dza.

(5.137)



Chapter 6

Supersymmetric States in

AdS3/CFT2 II : Quantum Analysis

6.1 Introduction

In the previous chapter, we constructed the space of all quarter BPS brane probes

in Type IIB string theory on global AdS3 × S3 × T 4/K3 [120]. In this chapter, we

will attempt to quantize this set of solutions.

Let us briefly review the set of quantum states that we are trying to describe. The

AdS/CFT conjecture relates type IIB superstring theory on global AdS3×S3×T 4/K3

to the NS sector of a (4,4) CFT living on the boundary of AdS. The NS-sector of the

N = 4 algebra in 1+1 dimensions has short representations that are built on a special

kind of lowest weight state called a chiral primary (A chiral primary has the property

that its R-charge is equal to its conformal weight). 1
4

BPS states of the boundary

theory are of the form |anything〉|chiral primary〉. The probe solutions that we will

202
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discuss are dual to these states. Hence, by quantizing these solutions, we expect to

obtain a description of the 1
4

BPS partition function of the boundary CFT.

Now, we recall that one of the interesting features of these probes in global AdS

is that, for a generic assignment of charges (i.e spacetime momenta), they are bound

to the center of AdS and cannot escape to infinity. This, however, makes the quan-

tization of these probes difficult since, in the interior of AdS, the natural symplectic

structure on the space of solutions couples different degrees of freedom to each other

in a complicated manner. To circumvent this difficulty, we first rewrite the supersym-

metric probe solutions of Chapter 5 as left-moving classical solutions of a ‘Polyakov’

type non-linear sigma model. The ‘bound states’ above then give rise to states in

discrete representations of the SL(2, R) WZW model on AdS3.

As we mentioned in Chapter 5, string theory on AdS3 has several moduli, or

parameters, that we can adjust. This picture is explained further in Figure 6.1,

where we have drawn a cartoon of the moduli space of D1-D5 system. At some point

in the moduli space, the system may be described by the symmetric product CFT on

the symmetric product (T 4)N/SN . At other points, it has a description as the low

energy limit of the theory on a stack of Q1 D1 and Q5 D5 branes with no fluxes or

theta angles, where Q1, Q5 are relatively prime divisors of N . Notice, that there are

many possible factorizatios of N . There is a separate theory for each factorization,

but all these worldvolume theories are believed to be continuously connected. It is

possible to go from one theory to the other by tuning the BNS fluxes and theta angles

on the worldvolume. This point is discussed further in [121].

Supersymmetric probes exist only when the bulk theta angle and NS-NS fields are
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Figure 6.1: Cartoon: Moduli Space of the D1-D5 system

Q1 D1, Q5 D5( )

Symm. Prod.

((Q1/2) D1, 2 Q5 D5)

((Q1/3) D1, 3 Q5 D5)

set to zero i.e when the system is described as a ‘pure’ D1-D5 system. Now, it is well

known that, for these parameters, the boundary theory is singular because the stack

of D1 and D5 branes that make up the background can separate at no cost in energy

[79]. This leads to the presence of a continuum in the spectrum that vanishes as soon

as we turn on a theta angle or NS-NS fields. It is natural to ask if this continuum

meets the space of 1
4

BPS states. Generically, as we have explained, 1
4

BPS states

are described by discrete states that do not lie in a continuum. However, it turns

out, that for a very special assignment of charges, supersymmetric probes in AdS can

escape to infinity. Semi-classically, the quantization of these special probes gives rise

to states at the bottom of continua.

So, when the theta angle and NS-NS fields are set to zero, the 1
4

BPS partition

function has an intricate structure, that we will describe in some detail, with unam-

biguous contributions from all the discrete states. As soon as we turn on one of the

bulk moduli above, the 1
4

BPS partition function jumps. Such a process can happen

when short representations combine in pairs to form long representations. For exam-
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ple, in N = 4 Yang Mills theory on S3 × R, which is dual to type IIB string theory

on AdS5 × S5 it is known that both the 1
16

and 1
8

BPS partition functions jump as

soon as we turn on a ’t Hooft coupling and are not further renormalized [14].

However, by taking appropriate limits of the 1
4

BPS partition function, one may

obtain two ‘protected’ quantities: the elliptic genus and the spectrum of 1
2

BPS states

(these are built on a lowest weight state of the form |chiral primary〉|chiral primary〉).1

These quantities are protected in that they do not change as we move about on the

moduli space unless the spectrum changes discontinuously at some point. So it is of

interest to compare our results for these quantities with their known values at the

point in moduli space where the boundary theory becomes a symmetric product.

Now, de Boer, building on [93], found that the low energy structure of the 1
2

BPS

partition function and elliptic genus of the symmetric product had a striking property

[122, 123]. He found that these partition functions, for energies lower than the BTZ

black hole threshold, were completely explained by gravitons and multi-gravitons,

1Since the terms 1
4 BPS partition function and elliptic genus are, unfortunately, sometimes used

interchangeably in the literature, we pause here to review our terminology. In a (4,4) theory, states
may be indexed by their left and right moving conformal weights h, h̄ and R-charges r, r̄. The
partition function depends on 4 chemical potentials:

Z(β, β̄, ρ, ρ̄) = Tre−βh−β̄h̄−ρr−ρ̄r̄. (6.1)

The 1
4 BPS partition function depends on 3 chemical potentials and is given by:

Z 1
4
(β, ρ, µ̄) = lim

β̄→∞
Z(β, β̄, ρ,−β̄ + µ̄). (6.2)

The elliptic genus depends on 2 chemical potentials and is given by:

E(β, ρ) = Z(β, β̄, ρ,−β̄ + 2πi), (6.3)

where the RHS is actually independent of β̄. The 1
2 BPS partition function also depends on 2

chemical potentials:
Z 1

2
(µ, µ̄) = lim

β→∞,−β̄→∞
Z(β, β̄,−β + µ,−β̄ + µ̄). (6.4)
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with an appropriate exclusion principle.2 The discussion above gives us, for the

first time, a clear explanation of this phenomenon. Supersymmetric giant graviton

solutions do not exist at a generic point in moduli space. Hence, almost everywhere

in moduli space, the 1
2

BPS partition function and elliptic genus are protected and

see contributions only from gravitons and multi-gravitons at low energies.

However, we are also left with a puzzle because on this special submanifold of

moduli space, giant graviton solutions do exist far below the black-hole threshold.

Why is their signature not seen in the 1
2

BPS partition function and elliptic genus

evaluated at the symmetric product point? In section 6.3.4, we resolve half of this

puzzle by showing that, except at very special charges, giant gravitons cannot describe

1
2

BPS states! The classical solutions that correspond to generic 1
2

BPS states, all the

way up to the threshold of the BTZ black hole, are geodesics and not puffed up branes

– gravitons rather than giant gravitons. The question of the elliptic genus is more

subtle. The elliptic genus is ‘blind’ to right-moving charges. So, semi-classically, the

sum that contributes to the elliptic genus runs not only over ‘bound states’ but also

over the states at the bottom of continua. The presence of this continuum removes

the puzzle since it invalidates the usual arguments that protect the Index.

To verify this semi-classical story, we exactly quantize the simplest of the probes

above – the D-string – by dualizing to an F1-NS5 frame and using the techniques of

[113, 114]. This analysis yields results that are almost entirely in accordance with

our semi-classical expectations. We view this as a validation of our basic philosophy

2This range of energies is what contributes to the ‘polar-part’ of the elliptic genus. Since the
elliptic genus can be almost completely reconstructed from a knowledge of its polar part [124] it
appears that this Index in AdS3 knows only about gravitons, just like its counterpart in AdS5 [14].
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that the supersymmetric sector of the full quantum theory may be understood by

quantizing supersymmetric classical solutions (this idea has previously been exploited

in [71, 72, 73, 74, 49, 75, 50, 51]). We find, as expected, discrete 1
4

BPS states that,

moreover, obey exactly the same energy formula that we obtain by semi-classical

methods. By taking limits of the 1
4

BPS partition function, we are also able to

reproduce, almost exactly, the spectrum of 1
2

BPS states of the symmetric product.

However, we find, as has been found earlier [125] and as is expected from an analysis

of the singularities of the boundary theory on this submanifold of moduli space [79],

that some chiral-primaries are missing. These missing chiral-primaries are exactly at

the point where, semi-classically, we expect to find a continuum. However, in the

exact analysis, the measure for the continuum vanishes at this point. We discuss this

issue further in Section 6.5.

A brief outline of this chapter is as follows. In section 6.2, we present a brief

summary and review of construction of 1
4

BPS brane probe solutions described in the

previous chapter and discuss some toy examples of semi-classical quantization. In

section 6.3, we describe a second approach to classical supersymmetric solutions that

turns out to be much more convenient for purposes of quantization. In section 6.4,

we discuss the quantization of these probe solutions and show that they correspond

to states in discrete representations of the SL(2, R) WZW model. We also describe

the resultant Hilbert space in the semi-classical approximation. In Section 6.5, we

perform an independent and exact quantization of the simplest of the probes above

– D strings. By restricting the partition function of D-strings to its supersymmetric

subsector, we validate the energy formula of section 6.4. We also use this exact



Chapter 6: Supersymmetric States in AdS3/CFT2 II : Quantum Analysis 208

calculation to discuss, more precisely, the contribution of these probes to the elliptic

genus and the half-BPS partition function; the latter matches very well with the result

expected from the symmetric product.

6.2 Classical Supersymmetric Solutions in Global

AdS3

6.2.1 Review

We start this section with a very brief, and self-contained review of the results of

Chapter 5. We present only the results and no proofs.

Consider global AdS3 × S3 × T 4 with metric:

ds2 = Gµνdx
µdxν

= g

√
Q1Q5

v
α′
[
− cosh2 ρdt2 + sinh2 ρdθ2 + dρ2 + dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2

]
+

√
Q1

Q5v
α′ds2

int.

(6.5)

ds2
int is the metric on the internal T 4 whose sides are of length 2πv

1
4 and g,Q1, Q5 are

parameters that determine the string coupling constant, and the 3 form and 7 form

RR field strengths according to the formulae summarized in Table 5.2 above. We

are following the notation of [93]. We parameterize the internal manifold using the

coordinate z1...4. Although we will concentrate here on the case where the internal

manifold is T 4, our results may be easily generalized to K3.

If the theta angle (a linear combination of the RR 0 and 4 form) and NS-NS fields

are set to zero then, as we explain below, this background supports 1
4

BPS brane
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probes that consist of D1 branes, D5 branes and also bound states of p D1 and q D5

branes.

First, consider the case of a D-string (i.e p = 1, q = 0). The bosonic part of the

brane action is:

S =

∫
Lbrane dτdσ = − 1

2πα′

∫
e−φ
√
−h dτdσ +

1

2πα′

∫
Bµν∂αX

µ∂βX
ν ε

αβ

2
dτdσ.

(6.6)

where h = det(Gµν∂αX
µ∂βX

ν), α, β run over the two worldsheet coordinates σ, τ

and B is the RR 2 form and φ the dilaton specified in Table 5.2. Now, consider the

‘effective’ metric:

ds2 = Geff
µνdx

µdxν

= Q5

[
− cosh2 ρdt2 + sinh2 ρdθ2 + dρ2 + dζ2 + cos2 ζdφ2

1 + sin2 ζdφ2
2

]
+

1

g
ds2

int.

(6.7)

If we define heff = det
(
Geff
µν∂αX

µ∂βX
ν
)

then classically the action (5.41) may be

rewritten as:

S =

∫
Lbrane = − 1

2π

∫ √
−heff dτdσ +

1

2πα′

∫
Bµν∂αX

µ∂βX
ν ε

αβ

2
dτdσ. (6.8)

Q1 does not appear in the effective action above and this explains why, only Q5 and

not Q1 appears in the formulae of Table 5.2.

If we denote the energy and angular momenta in global AdS by E,L respectively

and the two SU(2) angular momenta on the S3 by J1+J2

2
, J1−J2

2
then the bulk BPS

bound is

E − L ≥ J1 + J2. (6.9)
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It was found in [120] that probe D-strings saturate this bound provided the vector

nµ = ∂
∂t

+ ∂
∂θ

+ ∂
∂φ1

+ ∂
∂φ2

is tangent to the brane worldvolume at all points.

Now, let us say we are given the shape of the D-string at a particular point of

time. We can then translate each point on the string along the integral curves of the

null vector field above to generate the entire brane worldvolume. Hence, the set of

all supersymmetric brane worldvolumes is the same as the set of all initial shapes of

the D-string.

The brane worldvolume is parameterized by 10 functions Xµ(σ, τ). Let us now

choose the coordinate τ along the brane worldvolume to be such that

∂Xµ

∂τ
= nµ. (6.10)

In the coordinate system of (5.55), nµ is just a constant so we can explicitly solve the

equation above for the functions Xµ. We find that:

t = τ, θ = θ(σ) + τ, ρ = ρ(σ), ζ = ζ(σ), φ1 = φ1(σ) + τ, φ2 = φ2(σ) + τ, za = za(σ).

(6.11)

Hence, the set of all supersymmetric D-strings may be parameterized (up to a repa-

rameterization of σ) by the set of all profile functions θ(σ), ρ(σ), φ1(σ), φ2(σ), za(σ).3

In table 5.2 we summarize these results and also evaluate the spacetime momenta

(that integrate to give conserved charges of the action (6.8)) on these solutions.

Now we turn to D5 branes. It may be shown, either by a kappa symmetry analysis

or an analysis of the DBI action, that D5 branes that wrap the internal manifold and

3In order for the brane worldvolume to satisfy the equations of motion, it is important that the
determinant of the worldsheet metric not vanish at any point. In the parameterization above, this
means X ′ · Ẋ must maintain a constant sign.
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have the property that the vector nµ is tangent to their worldvolume at each point

are also supersymmetric [120]. The formulae for the momenta in Table 5.2 are then

all valid but with Q5 replaced by Q1.

The third and last kind of supersymmetric probe is a bound state of p D1 branes

and q D5 branes. To obtain a supersymmetric probe of this kind, we start with a stack

of coincident q D5 branes all of which maintain the killing vector nµ tangent to their

worldvolume at each point. Now, we turn on U(q) gauge fields on the worldvolume:

Ai(σ). These are translationally invariant along τ and give rise to a field strength:

F = Fσidσ ∧ dzi +
1

2
Fijdz

i ∧ dzj. (6.12)

The condition for supersymmetry then is that this field strength be self-dual on the

internal manifold: Fij = εklijFkl. We interpret this configuration as being a supersym-

metric bound state of q D5 branes and p D1 branes, where p is the instanton number

of F

p =
1

8π2

∫
Mint

Tr(F ∧ F ), (6.13)

and F is normalized in the conventional way. These classical instanton configurations

have moduli and instead of using the gauge fields Ai(σ) it is convenient to parameter-

ize them in terms of their moduli ζa(σ). Note that the moduli can vary as a function

of σ without spoiling supersymmetry.

Somewhat surprisingly, the formulae for the momenta presented in Table 5.2 con-

tinue to be valid for such (p, q) strings with the following two generalizations:

1. Q5 is replaced by

k = p(Q5 − q) + q(Q1 − p). (6.14)
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2. the internal manifold Mint is replaced by the moduli space of p instantons in a

U(q) theory on Mint. We will denote this manifold by Mp,q. For uniformity of

notation, we will henceforth use M1,0 ≡ Mint. The coordinates za will also be

used for Mp,q.

This result relies on the fact that classically, within the DBI approximation, the

dynamics of the supersymmetric subsector of the 5+1 dimensional D5 brane theory

reduces to the dynamics of a 1+1 dimensional sigma-model, without taking an IR

limit!

The probe solutions listed above have several salient features

1. They have an energy gap – E ≥ min{Q5, Q1}. This is intuitive because below

this energy one would expect the Hilbert space to comprise gravitons. At the

minimum energy above, stringy effects in the form of these supersymmetric

giant gravitons make their appearance.

2. In the AdS background that we have been discussing, we can turn on self dual

NS-NS fluxes on the internal manifold and a theta angle. On the boundary, this

corresponds to deforming the theory with some marginal operators [98]. The

formulae of Table 5.2 are valid on the submanifold of moduli space where the

coefficients of these operators are set to zero. If we move off this submanifold,

there are no BPS giant graviton solutions. This means that the 1
4

BPS partition

function which, as we will find, has an intricate structure on this submanifold

jumps as soon as we move off it. The only 1
4

BPS states at a generic point in

moduli space are then given by the 1
2

BPS gravitons and multi-particles of these.

This explains why the low energy elliptic genus and 1
2

BPS partition function of
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the symmetric product do not see contributions from the 1
4

BPS giant gravitons

that we have described.

3. Now it is well known that on the special submanifold of moduli space that we

have been considering, the boundary theory is singular [79]. This raises the

question as to whether the states obtained by quantizing the solutions of Table

5.2 are somehow localized about the singularities of the Higgs branch. In par-

ticular, one may worry about whether these states are located in a continuum.

That this is not so, can be seen from the fact that for generic charges, these

solutions are bound to the interior of AdS and cannot go off to the boundary

of AdS.

Consider a very long D-string stretched near the boundary of AdS. Such a

string has finite energy because the flux through the string almost cancels its

tension. Such a string must wrap the θ direction and we can use our residual

diffeomorphism invariance to set θ′ = w. For such a string, if we take the strict

ρ→∞ limit, we obtain

E − L =
Q5

2π

∫
γdσ

=
Q5

2π

∫ [
sinh2 ρθ

′2 + cos2 ζφ
′2
1 + sin2 ζφ

′2
2 + ρ

′2 +GabX
a′Xb′

cos2 ζφ′1 + sin2 ζφ′2 + sinh2 ρθ′

]
dσ

= Q5w.

(6.15)

Thus, we notice that for strings stretched close to the boundary, the quantity

E − L must be quantized in units of Q5. For intermediate, and generic, values

of E − L the solutions of Table 5.2 are ‘bound’ to the center of AdS. This

indicates that quantizing them would lead to discrete states, rather than states
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that are at the bottom of a continuum.

Let us elucidate point (3) above by considering another subset of solutions that

do not wrap the θ circle at all. Consider the following solution (parameterized by

w, ρ0, ζ0, φ10 , θ0)

t = τ, θ(σ) = θ0, ρ(σ) = ρ0, ζ(σ) = ζ0, φ1(σ) = φ10 + wσ, φ2(σ) = wσ. (6.16)

Note, that we can absorb the constant in φ2(σ) into a shift in the origin of σ. For

this solution (using w > 0 which is necessary for supersymmetry)

E = Q5w cosh2(ρ0), L = Q5w sinh2(ρ0), J1 = Q5w sin2(ζ0), J2 = Q5w cos2(ζ0).

(6.17)

In this subsector, a given set of charges fixes ρ0:

sinh2 ρ0 =
L

wQ5

. (6.18)

Equation (5.64) has a resemblance to the formula for the size of the extremal

BTZ black-hole and we refer the interested reader to [120] for the details of this

analogy. This discussion provides us with an inkling of one of the main results of

this chapter. Quantizing classical supersymmetric solutions in global AdS generically

leads to ‘bound’ states.

6.2.2 Quantization using the DBI Action: Preliminary At-

tempts

The space of all classical solutions of a theory is isomorphic to its phase space.

The Lagrangian equips this space with a symplectic structure. This may be used to
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canonically quantize the theory. The advantage of this approach is that it maintains

covariance. Furthermore, we can restrict attention to a subsector of phase space

by identifying the corresponding classical solutions. This technique was, it seems,

invented by Dedecker [103], studied in [104, 105, 106, 107, 108] and later brought

back into use by [109, 99]. We refer the reader to [110] for a nice exposition of this

method.

The philosophy of this chapter is that it may be possible to quantize special sub-

sectors of solutions, for example supersymmetric subsectors, to obtain a subset of

the full Hilbert space. We have enumerated all low energy supersymmetric classi-

cal solutions to Type IIB string theory on global AdS3 in the previous subsection.

Unfortunately it is not technically feasible to quantize all these solutions using the

action (6.8) and its associated symplectic form. In section 6.4, we will show how this

problem may be attacked using another method. For this subsection, however, we will

restrict attention to even smaller subsectors. There is no strict justification for this

since the symplectic form does couple the subset of solutions we will discuss below to

other solutions not in this subset. Yet, these studies are useful as toy examples that

yields some insight into the structure of the quantum theory.

To start with let us consider the subset of solutions (6.11) where we restrict to:

θ(σ) = 0, ρ(σ) = ζ(σ) = 0, φ1(σ) = φ2(σ) = wσ. (6.19)

with an arbitrary profile on the internal manifold Mp,q. For large p, q this is not

a severe restriction since most of the degrees of freedom of the string are in the

fluctuations on Mp,q.

The profile of the string on the classical instanton moduli space Mp,q is parame-
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terized by functions za(σ), with conjugate momenta Pza = − 1
2πg
gint
ab (zb)′ where gint

ab is

the metric on Mp,q. The spacetime energy and angular momentum are given by:

E + L

2
=
kw

2
+
hint

w
,

E − L
2

=
kw

2
. (6.20)

where hint = 1
2πg

∫
gint
ab (za)′(zb)′dσ is the ‘level’ of the sigma model on Mp,q.

To see what happens when we quantize the canonical structure above, consider

the space of functions X(σ) with the symplectic form:

Ω =

∫
−δX ′(σ) ∧ δX(σ)

dσ

2π
. (6.21)

Expanding X(σ) = Xn√
2|n|

einσ, the symplectic structure (6.21) leads to the usual Dirac

bracket prescription:

{Xn, X−n}D.B = i, n > 0 (6.22)

Promoting Dirac brackets to commutators will lead to a Fock space that has the

usual left moving oscillator modes of a scalar field, but no right moving oscillators or

momentum zero modes. Since these zero modes are what tie the left and right movers

together, what we have here is the purely ‘left-moving’ part of a scalar field.

In exactly the same way, in the example above, we obtain the left-moving part of

the quantum non-linear sigma model onMp,q. We will denote this Hilbert space, that

comprises the trivial zero mode sector, by H0(Mp,q). The energy in AdS is related

to the level of this CFT by the formula (6.20).

The sigma-model on Mp,q is conformal and admits an N = 4 supersymmetric

extension. Now, the left moving level of the boundary theory is given by E+L
2

and

one may think that the superconformal algebra carries over from the worldsheet

to spacetime via formula (6.20). The usual Virasoro algebra (see (6.55)) is indeed
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invariant under the redefinition L′n − δn,0 c
′

24
= 1

w
(Lwn − δn,0 c

24
), c′ = cw, but now we

see that the shift kw
2

does not allow us to use this prescription for equation (6.20). In

Section 6.4, we will see how the N = 4 sigma model on Mp,q is supplemented with

degrees of freedom from the ‘center of mass’ coordinates that shift the central charge

to correctly generate this shift.

To make the example above technically tractable, we were forced to fix the ‘center

of mass’ coordinates of the strings. We will, now, relax this assumption slightly and

consider the slightly different subset of solutions where we fix to

θ = wσ + τ, φ1 = (φ1)0 + τ, φ2 = (φ2)0 + τ. (6.23)

where (φ1)0, (φ2)0 are two real constants and w an integer. ρ, ζ and the profile on

Mp,q remain arbitrary. On this submanifold, we can expand out the ρ and ζ in (6.11)

as:

ρ(σ) =
∞∑
−∞

ρn√
2k|n|

einσ, ζ =
∞∑
−∞

ζn√
2k|n|

einσ. (6.24)

The momenta of Table 5.2, then lead to the Dirac bracket prescriptions, for n > 0:

−i{ρn, ρ−n}D.B = 1,

−i{ζn, ζ−n}D.B = 1.

(6.25)

Promoting these Dirac brackets to commutators leads, as we explained above, to the

left-moving sector of the Hilbert space of a free scalar field. Already, we see that

the spacetime momenta do not have simple quadratic expressions in terms of the

‘creation’ and ‘annihilation’ operators above, except for

L =
Nρ +Nζ + hint

w
. (6.26)
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where Nρ, Nζ are the levels of the ρ and ζ CFT and hint is the level of the non-linear

sigma model on Mp,q.
4

The two examples above give us some insight into the structure of the full quantum

theory. For example, we see that the excitations on the internal manifoldMp,q enter

the formulae for spacetime energy and angular momentum in the simple fashion

specified by (6.26) and (6.20). We will obtain similar formulae in the full quantization

that we perform in section 6.4.

Unfortunately, it does not seem technically possible to proceed and quantize the

entire space of solutions in Table 5.2 by extending these techniques. So, we will turn,

in the next section to another approach to classical solutions, using the ‘Polyakov’

action.

6.3 Another Approach to Classical Solutions:

‘Polyakov’ Action

Although we could quantize a limited subsector of the moduli space of supersym-

metric solutions above, the symplectic form and Hamiltonian on the entire moduli

space do not lend themselves to simultaneous diagonalization in any simple fashion.

So, we will now present another approach to analyzing classical solutions in global

AdS that will be useful for quantization.

In the action, (6.8) that governs the motion of D-string, we can introduce a world-

sheet metric to get rid of
√
−heff . We can then fix conformal gauge and introduce

4It is known that in the full quantum theory, both the ρ CFT and the ζ CFT develop linear dilaton
terms but we cannot derive these shifts in the stress tensor from our semi-classical perspective.
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light-cone coordinates x± = τ ± σ to obtain the action

SP =
1

2π

∫
(Geff

µν +
Bµν

α′
)∂+X

µ∂−X
ν dx+dx−. (6.27)

This is exactly the same as the usual transition from the Nambu-Goto to the Polyakov

action (the P stands for Polyakov) for the F-string. We emphasize that the manipu-

lation above is purely classical.

A classical solution of the action above is equivalent to a classical solution of the

DBI action only after we impose the Virasoro constraints:

T (x+) = T̃ (x−) = 0. (6.28)

where T and T̃ are the classical left and right moving stress tensors derived from the

action (6.27).

The symplectic structure on the the set of all solutions to the action (6.27) that

obey the constraints (6.28), saturate the bound (6.9) and for which the worldsheet

determinant never vanishes, is identical to the symplectic structure on the set of solu-

tions to the action (6.8) saturating the bound (6.9). As we explained in the previous

section, the symplectic structure on the space of supersymmetric (p, q) strings is the

same as the symplectic structure on the space of supersymmetric solutions to the

action (6.8) with the substitutions

Q5 → p(Q5 − q) + q(Q1 − p), Mint →Mp,q. (6.29)

This means that, as long as we are interested only in supersymmetric solutions we

can use the action (6.27), with the substitutions (6.29) for (p, q) strings also. This

allows us to treat (1, 0) strings on the same footing as all other (p, q) strings in the

discussion below.
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6.3.1 The SL(2, R) × SU(2) WZW model: Background and

Notation

The action (6.27) may be recast as an SL(2, R)×SU(2) WZW model in addition

to the non-linear sigma model on the internal manifold. To see this define,

g1 = ei
t−θ

2
σ2eρσ3ei

t+θ
2
σ2 ,

g2 = ei
φ1−φ2

2
σ3eiζσ2ei

φ1+φ2
2

σ3 .

(6.30)

Clearly, g1 ∈ SL(2, R) and g2 ∈ SU(2). The action (6.27), with the generalization

(6.29) may be written as:

S =
−k
4π

∫
Tr{(g−1

1 ∂µg)2 + (g−1
2 ∂µg)2} d2x+ Γ

SU(2)
WZ + Γ

SL(2,R)
WZ + Sint, (6.31)

where the terms Γ
SU(2)
WZ and Γ

SL(2,R)
WZ are the usual Wess Zumino terms for SU(2)

and SL(2, R) respectively (see [111] and references therein for details) and Sint is

the action for the non-linear sigma model on the internal manifold Mp,q. We will,

sometimes, find it convenient to work with the group element

g = g1 ⊗ g2, (6.32)

where g ∈ SL(2, R)× SU(2).

So, apart from the non-linear sigma model onMp,q, we now have exactly a WZW

model of level k on SL(2, R)×SU(2). The SU(2) WZW model has been studied very

widely, and the SL(2, R) model has attracted attention in the studies of fundamental

strings propagating on AdS3. In what follows, we will draw heavily on the studies of

[126, 113, 114].

It is important that we wish to study the WZW model on the global cover of

SL(2, R). In our analysis, we will need to ensure that the string worldsheet closes in
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global AdS3 and not just in the group parameterization (6.30). This has consequences

that we will mention below.

Classical solutions of the WZW model can be decomposed into a product of a

left-moving solution and a right-moving solution.

g(x+, x−) = g+(x+)g−(x−). (6.33)

The entire solution must, of course, be periodic as a function of σ, but the two

individual components only need to come back to each other up to a monodromy,

M ∈ SL(2, R)× SU(2).

g+(x+ + 2π) = g+(x+)M,

g−(x− − 2π) = M−1g−(x−).

(6.34)

The decomposition of equation (6.33) is not unique. Given a classical solution

g(x+, x−), a decomposition {g+(x+), g−(x−)}, and any constant group element U ,

one obtains another decomposition of the same solution via {g+U,U−1g−}. Under

this M → U−1MU . Hence, M is determined only up to conjugation. Classical

solutions of the WZW model may be classified by the conjugacy class of M .

The quantum WZW model has a current algebra symmetry and the Hilbert space

breaks up into representations of this algebra. It was shown in [127] that, at least for

the case of the SU(2) affine algebra, all states in a particular representation have the

same monodromy eigenvalue. Conversely, as we will do, one may use the monodromy

to obtain information about which states occur in the spectrum.

Our model, has six right moving and six left moving conserved currents. Three

correspond to SL(2, R) generators, and three correspond to SU(2) generators. Ex-
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plicitly, these currents are given by

Ja(x+) = kTr(Ga∂+g1g
−1
1 ), J̃a(x−) = kTr((Ga)∗g−1

1 ∂−g1),

Ki(x+) = kTr(
−iσi

2
∂+g2g

−1
2 ), K̃i(x−) = kTr(

−i(σi)∗

2
g−1

2 ∂−g2).

(6.35)

In the first line, a runs over the set {z,+,−} and we take Gz = −iσy
2
, G± = Gx±iGy =

1
2
(σz ± iσx). In the second line, i runs over x, y, z. The left and right moving stress

energy tensors are given by

T (x+) =
1

k
(−(Jz)2 + (Jx)2 + (Jy)2 + (Kx)2 + (Ky)2 + (Kz)2) + Tint(x

+),

T̃ (x−) =
1

k
(−(J̃z)2 + (J̃x)2 + (J̃y)2 + (K̃x)2 + (K̃y)2 + (K̃z)2) + T̃int(x

−),

(6.36)

where Tint(x
+), T̃int(x

−) are the left and right moving stress energy tensors of the sigma

model on the internal manifold. We will only need the property that
∫
Tint(x

+)dx+ ≥

0,
∫
T̃int(x

−)dx− ≥ 0.

We will find it convenient to use the modes

T (x+) =
∑

Lne
inx+

, J i(x+) =
∑

J ine
inx+

, Ki(x+) =
∑

Ki
ne
inx+

,

T̃ (x−) =
∑

L̃ne
inx− , J̃ i(x−) =

∑
J̃ ine

inx− , K̃i(x−) =
∑

K̃i
ne
inx− .

(6.37)

The energy E and angular momentum L in global AdS are related to the zero

modes of these currents.

E + L

2
= Jz0 ,

J1 − J2

2
= Kz

0 ,
E − L

2
= J̃z0 ,

J1 + J2

2
= K̃z

0 . (6.38)

Hence, the BPS bound (6.9) is saturated when:

J̃z0 = K̃z
0 . (6.39)
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6.3.2 Solving the Right-Moving Sector

We will now show that the supersymmetry relation (6.39) and the Virasoro con-

straints (6.28), are enough to solve for the entire right-moving sector of the non-linear

sigma model (6.27).

First, recall that even in conformal gauge, we have the freedom to redefine x− →

f(x−). We will choose this freedom to set

J̃z(x−) = J̃z0 , (a constant) (6.40)

Let us see how this gauge may be reached. From the definition of the current, (6.35),

we see that under a coordinate transformation x−old → x−:

J̃z(x−old) =
∂x−

∂x−old

J̃z(x−). (6.41)

Hence, if we define a new coordinate by

∂x−

∂x−old

=
J̃z(x−old)

J̃z0
, (6.42)

we will explicitly reach the gauge (6.40). Notice that (6.42) is always well-defined

since to obtain a solution to the Virasoro constraints, we must have J̃z0 > 0. Second,

the constant J̃z0 is automatically determined by demanding that the new coordinate

have the same periodicity as the old coordinate i.e. x−(x−old + 2π) = x−(x−old) + 2π.

This is reassuring, since (6.38) tells us that J̃z0 is a physical quantity; so, gauge fixing

should leave it unaltered.

Now, consider the Virasoro constraint

L̃0 = 0. (6.43)
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In the gauge above, this reads

−(J̃z0 )2 + kL̃int
0 +

∑
n≥0

|J̃xn |2 + |J̃yn|2 + |K̃z
n|2 + |K̃x

n|2 + |K̃y
n|2 = 0. (6.44)

Using relation (6.39), we find that this implies that, except for J̃z0 which is set equal to

K̃z
0 by (6.39) and remains an arbitrary parameter, all the other Fourier components

that appear in the expression above are set to zero!

L̃int
0 = 0,

J̃xn = J̃yn = K̃x
n = K̃y

n = 0,

K̃z
n6=0 = J̃zn6=0 = 0,

K̃z
0 = J̃z0 .

(6.45)

We can now solve the equations (6.35) to completely obtain the right moving

sector of our theory in terms of the single arbitrary parameter J̃z0 . In particular,

referring to the notation of (6.32), we see that

g1(x+, x−) = g1(x+) exp

{
i
J̃z0
k
σ2x

−

}
,

g2(x+, x−) = g2(x+) exp

{
i
J̃z0
k
σ3x

−

}
.

(6.46)

All right moving excitations on the internal manifold are also set to zero by (6.45).

Actually, these solutions are just the solutions (6.11) in a new guise. Referring to

the group parameterization (6.30), we see the solutions (6.46) translate to:

t(σ, τ) = t(x+) +
J̃z0
2k
x−, θ(σ, τ) = θ(x+) +

J̃z0
2k
x−, φ1(σ, τ) = φ1(x+) +

J̃z0
2k
x−,

φ2(σ, τ) = φ2(x+) +
J̃z0
2k
x−, ρ(σ, τ) = ρ(x+), ζ(σ, τ) = ζ(x+), za(σ, τ) = za(x+).

(6.47)

Two points are worth emphasizing.
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1. By solving the right-moving side of the SL(2, R) and SU(2) WZW models, we

have also determined the monodromy of the left-moving side.

2. The monodromy of the SU(2) part and the SL(2, R) part are linked, since they

both depend on the same parameter J̃z0 .

As we mentioned, the monodromy of the solution gives us information about

which representation of the current algebra we are in. The two features above then

mean that at least semi-classically, once we specify the representation of the right-

moving SL(2, R) current algebra this determines the representation of the left-moving

SL(2, R) algebra and the left and right moving SU(2) current algebras(the inclusion

of fermions modifies this statement slightly as we discuss in Section 6.5).

SL(2, R) has three types of conjugacy classes. Given Γ ∈ SL(2, R), we determine

its conjugacy class to be of type elliptic ((tr(Γ))2 < 4), parabolic ((tr(Γ))2 = 4) or

hyperbolic ((tr(Γ))2 > 4). We see that, generically, the monodromy of the solutions

(6.46) lies in an elliptic conjugacy class of the group. We will find, later, that quan-

tizing these solutions will give rise to ‘short strings’ in AdS3. This is linked to the

observation made above that unless E − L is quantized in units of k, our strings are

bound to the center of AdS3. When J̃z0 = nk
2

in equation (6.46) for some integer

n, the monodromy of the solutions (6.46) is ±1. This kind of solution can escape

to infinity and lies at the cusp of short and long strings. One may suspect that on

quantization these solutions would give rise to states at the bottom of a continuum.

Semi-classically, this is indeed true. The full quantum analysis in Section 6.5 raises a

puzzle regarding this that we will discuss there.
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6.3.3 Winding Sectors

Notice, that given a solution of the form (6.46) we can generate another solution

using the transformation

g1(x+, x−)→ eiw1σ2
x+

2 g1e
iw1σ2

x−
2 ,

g2(x+, x−)→ eiw2σ3
x+

2 g2e
iw1σ3

x−
2 .

(6.48)

In equation (6.46), this operation takes J̃z0 → J̃z0 + kw
2

.

The two parameters that determine the ‘spectral flow’ operation above have the

property that w1, w2 ∈ Z and w2 = w1(mod)2. Notice, two important features above.

First, we have to spectral flow the left moving part of the SL(2, R) model by exactly

the same amount as the right moving part; this is required by the periodicity of the

worldsheet in global AdS3 which is the global cover of SL(2, R). Supersymmetry

now determines that the right-moving part of the SU(2) WZW model must also be

spectrally flowed by w1. However, periodicity on S3 merely requires w2 = w1(mod)2.

Second, since π1(SU(2)) = 0, we cannot classify the solutions of the SU(2) WZW

model by their winding number. This is not true for SL(2, R) since π1(SL(2, R)) = Z.

Solutions to the SL(2, R) WZW model hence break up into sectors labelled by two

integers, one for the left-moving solution and the other for the right-moving solution.

Since we are considering the global cover of SL(2, R), closure of the worldsheet re-

quires the two integers to be equal. So,solutions of the WZW model with target space

the global cover of SL(2, R) break up into sectors labelled by an single integer w.
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6.3.4 1
2 BPS states

Before we conclude our discussion of classical solutions, we would like to discuss

two additional issues. The first regards ‘chiral, chiral primaries’ in global AdS. These

are half-BPS states of the N = 4 algebra on the boundary and are chiral primaries

on the left and on the right. This means that they satisfy the BPS relations

E − L = J1 + J2,

E + L = J1 − J2.

(6.49)

Extending the analysis of section 6.2, we conclude that probes that maintain, both

n1 =
∂

∂t
+

∂

∂θ
+

∂

∂φ1

+
∂

∂φ2

,

n2 =
∂

∂t
− ∂

∂θ
+

∂

∂φ1

− ∂

∂φ2

,

(6.50)

preserve the required 8 supersymmetries.

From our list of solutions, we can see that this fixes both the σ dependence and

the τ dependence. In particular, the only allowed solutions are:

t = τ, θ = wσ + τ, φ1 = const + τ, φ2 = wσ + τ,

ρ = const, ζ = const, zi = const.

(6.51)

The two tangent vectors above are then, ∂
∂τ

and ∂
∂τ
− 2

w
∂
∂σ

.

We now encounter a surprise. Calculating the charges of these solutions from

table 5.2, we find that for a (p, q) probe, E = J1 = kw and L = J2 = 0 where k

is given by (6.14). However, the boundary theory has chiral-chiral primaries for all

half-integer values of the scaling dimension(E+L
2

) upto Q1Q5

2
, not just the small subset

above. Evidently, smooth giant gravitons cannot describe generic chiral primaries; a

point that was stressed in [77].
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Moving now to the ‘Polyakov’ approach, we can find the classical solutions for

chiral-chiral primaries by merely repeating the analysis above for the left-moving

side. We find that the solutions that obey the relations (6.49) and have the correct

periodicity on the worldsheet are:

g1(x+, x−) = exp

{
i
Jz0
k
σ2x

+

}
exp

{
i
Jz0
k
σ2x

−
}
,

g2(x+, x−) = exp

{
i
Jz0
k
σ3x

+

}
exp

{
i
Jz0
k
σ3x

−
}
,

(6.52)

where, as before, g1 is an element of SL(2, R) and g2 an element of SU(2). The form

(6.52) is unique up to an irrelevant additive shift in σ. If we move to spacetime, using

the parameterization (6.30), we find that the solutions (6.52) correspond to curves

that pass through ρ = 0 (the center of AdS) and sit at ζ = 0.5 Hence, the values of θ

and φ2 are ill defined but if we take these values to be zero, then the solutions (6.52)

correspond to t =
2Jz0 τ

k
, θ = 0, ρ = 0, φ1 =

2Jz0 τ

k
, φ2 = 0, ζ = 0.

We now notice a remarkable feature about these solutions. Spectral flow does not

puff these geodesics into strings! The transformation (6.48) takes Jz0 → Jz0 + wk
2

but

leaves the solution in the form of a geodesic placed at ρ = 0, ζ = 0. This simple

observation explains several facts about the bulk spectrum of chiral-chiral primaries

that have hitherto been puzzles:

1. The spectrum of chiral-chiral operators in non-zero winding sectors was calcu-

lated in a nice paper by Argurio, Giveon and Shomer [125] (AGS) and found

to be a continuation of a graviton spectrum. While one may expect stringy

effects to start showing at energies of order Q5 or Q1, this does not happen for

5The Polyakov formalism can accommodate these solutions because solutions to the action (6.27)
obeying the constraints (6.28) comprise all solutions to the action (6.8) plus geodesics
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chiral-chiral operators because spectral flow does not puff these geodesics up

into strings. This also explains why de Boer, in [122], was successful in repro-

ducing the spectrum of (1/2) BPS states on the boundary up to energies Q1Q5

2

by naively extending the graviton spectrum.

2. AGS conjectured that in each winding sector, some chiral-operators (with charges

integrally quantized in units of Q5

2
) vanished into the continuum. We see, that

at exactly these values of the charge, chiral-chiral primaries are described by

giant gravitons as in equation (6.51). Classically, they can be at any value of ρ

including ρ→∞. Quantum mechanically this means that they are at the bot-

tom of a continuum of non-supersymmetric states and we may expect difficulty

in counting them.

3. From the spectrum of chiral operators, AGS also discussed the possibility that

the boundary theory was a deformation of the iterated symmetric product

((Mint)
Q5/SQ5)Q1/SQ1 . However, since the classical solutions corresponding to

chiral operators are geodesics they do not differentiate between different probes;

we cannot determine if they are constituted by D1 branes, D5 branes or a bound

state of these. Even in the semi-classical quantum analysis below we find that

chiral-chiral operators can be obtained by quantizing any of these probes.This

restores the democracy between Q1 and Q5.

4. Correlation functions of chiral-chiral operators, in the zero-winding sector, were

recently calculated by Gaberdiel and Kirsch [128] and Dabholkar and Pakman

[129]. The insight above, that chiral-chiral operators do not ‘see’ winding, in-
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dicates that similar results would be obtained by repeating this calculation in

sectors of non-zero winding.

6.4 Semi-Classical Quantization

We will now use the insights of the previous sections to deduce features of the

1
4

BPS sector of quantum string theory on AdS3. Throughout this section, we will

work in a semi-classical limit, where the charges of the states that we consider are

large and hence, for example j(j + 1) may be well approximated by j2. There are

two reasons for doing this. The first is that the analysis we perform here is valid

for general (p, q) probes. The second is we will find that when we perform an exact

analysis of the D-string by dualizing to a F1-NS5 frame, it will turn out the formulae

we derive in this section are quantitatively correct including all the additive factors

of 1. The factors that we neglect, conspire to cancel!

As we mentioned in the previous section, a (p, q) probe leads to an SL(2, R) ×

SU(2) model with level k given by equation (6.14). The details of the internal mani-

fold, Mp,q will not be too important for us here.

The approach we will adopt is as follows. We start by reviewing the Hilbert

space of the SL(2, R) and SU(2) WZW models. The question that faces us, then is

to understand what sector of this Hilbert space corresponds to the solutions (6.46)

obeying the Virasoro constraints. We tackle this question in subsection 6.4.2.
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6.4.1 The SU(2) and SL(2,R) WZW models: a review

The SL(2, R) and SU(2) WZW models each have 3 left moving conserved currents

defined in equation (6.35) which we call J i andKi respectively. In the quantum theory

these currents give rise to an affine symmetry via the commutation relations:

[Jzn, J
±
m] = ±J±n+m, [Jzn, J

z
m] = −kn

2
δn+m,0, [J+

n , J
−
m] = −2Jzn+m + knδn+m,0.

[Kz
n, K

±
m] = ±K±n+m, [Kz

n, K
z
m] =

kn

2
δn+m,0, [K+

n , K
−
m] = 2Kz

n+m + knδn+m,0.

(6.53)

The Stress Energy tensors, for each algebra, are given by the usual Sugawara con-

struction. In particular, the modes Ln are given by:

LSL(2,R)
n =

1

2(k − 2)
:

[
+∞∑

m=−∞

J+
mJ
−
n−m + J−mJ

+
n−m − 2JzmJ

z
−m

]
:

LSU(2)
n =

1

2(k + 2)
:

[
+∞∑

m=−∞

K+
mK

−
n−m +K−mK

+
n−m + 2Kz

mK
z
−m

]
:

(6.54)

where : . . . : implies normal ordering where negatively moded operators are placed

before positively moded operators. These modes obey the algebra:

[LSL(2,R)
n , Jam] = −mJan+m, [LSU(2)

n , Ka
m] = −mKa

n+m,

[LSL(2,R)
n , LSL(2,R)

m ] = (n−m)L
SL(2,R)
n+m +

k

4(k − 2)
(n3 − n)δn+m,0

[LSU(2)
n , LSU(2)

m ] = (n−m)L
SU(2)
n+m +

k

4(k + 2)
(n3 − n)δn+m,0

(6.55)

Representations of the SU(2) affine algebra are constructed by starting with a

lowest weight state |j〉 obeying K±,zn>0|j〉 = 0, K+
0 |j〉 = 0, Kz|j〉 = j|j〉. Such a state

is called an ‘affine primary’. Given an affine primary, one acts in all possible ways

with the lowering operators K±,zn<0, K
−
0 and removes null states to construct the entire

representation. We will denote a representation built on an affine primary of weight
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j as Lj The spectrum of the SU(2) model at level k comprises the ‘diagonal modular

invariant’ ⊕j=0, 1
2
... k

2
Lj⊗L̄j, where the left moving affine primary has the same weight

as the right moving affine primary. We refer the reader to [112] for details.

The spectrum of the SL(2, R) WZW model is more intricate, because this group

is non-compact. The SL(2, R) WZW model also has lowest weight representations of

the kind described above. These are discussed in [130, 113] and we refer the interested

reader there for details. Here, we review the two kinds of representations that are

most relevant to strings propagating on AdS3.

1. Discrete Lowest Weight Representations D̂+
j : These representations are labeled

by a real number j. j is related to the second Casimir via c2 = 1
2
{J+

0 , J
−
0 } −

(Jz0 )2 = −j(j − 1). One starts with a state |j, j〉 obeying

J±,zn>0|j, j〉 = 0, J−0 |j, j〉 = 0, Jz0 |j, j〉 = j|j, j〉, (6.56)

and then acts with the remaining operators of the algebra {J±,zn<0, J
+
0 } to obtain

the entire representation.

2. Continuous Lowest Weight Representations Ĉαj : These representations are la-

belled by a real number s with j = 1
2

+ is. The second Casimir c2 = −j(j−1) =

s2 + 1
4
. One starts with a state |s, α, α〉 obeying

J±,zn>0|j, α, α〉 = 0, Jz0 |j, α, α〉 = α|j, α, α〉, (6.57)

and acts with the remaining operators of the algebra {J±,zn<0, J
±
0 } to obtain the

entire representation. Evidently, one may restrict 0 ≤ α < 1

Now, notice that both the SL(2, R) and SU(2) models have a ‘spectral flow’
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symmetry. The transformations

Jzn → Jzn +
kw

2
δn,0, Kz

n → Kz
n +

kw

2
δn,0

J±n → J±n∓w, K±n → K±n±w,

LSL(2,R)
n → LSL(2,R)

n − wJzn −
kw2

4
δn,0, LSU(2)

n → LSU(2)
n + wKz

n +
kw2

4
δn,0

(6.58)

preserve the algebra (6.53) and (6.55).6 For the SU(2) algebra, at level k, spectral

flow by an odd number of units maps us from a representation of lowest weight j to a

representation of lowest weight k
2
− j. Spectral flow by an even number of units maps

us back to the representation of lowest weight j. However, for the SL(2, R) algebra,

spectral flow generically produces a new representation that is not a lowest weight

representation at all! We denote these spectrally flowed representations by D̂w,+j and

Ĉw,αj . It was explained first in [131] and later in [113, 114] that a consistent Hilbert

space of bosonic strings propagating in AdS3 is formed by considering all D̂w,+j ⊗ ˆ̄D
w,+

j

with 1
2
< j < k−1

2
and all Ĉw,α1

2
+is
⊗ ˆ̄C

w,α
1
2

+is. Note that the value of j and w on the right

and left have to be the same.

6.4.2 Linking Classical Solutions to Quantum States

We need to identify which subsector of the spectrum above corresponds to the

solutions discussed in Section 6.3.2. Recall that an analysis of supersymmetry allowed

us to completely solve the right-moving sector. This, in turn, also determined the

monodromy of the left-moving sector, since the left and right moving parts of the

solution are constrained to have the same monodromy. The link between classical

6In this chapter, we will think of spectral flow as an operation on states that leaves the operators
themselves unchanged
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solutions and quantum states goes through the monodromy. The key result that we

need was proved by Chu et. al. in [127] drawing on the study of [132]. For other

studies examining the canonical formalism applied to WZW models, see [133] and

references therein.

Recall that the phase space of the WZW model consists of all classical solutions to

the action and these are of the form (6.33). The conjugacy class of the monodromy

is a well defined function on phase space. Canonical quantization promotes this

function to an operator. The authors of [127] considered the SU(2) model. Conjugacy

classes of SU(2) are labelled by a single real number 0 ≤ ν < π with corresponding

group element eiνσ3 . In [127], it was shown that states in the representation Lj with

0 < j < k
2

were eigenstates of the operator ν with eigenvalue

ν =
2j + 1

k + 2
π. [SU(2)] (6.59)

The analysis of [127] is rather intricate but it is not hard to understand the semi-

classical origins of formula (6.59). The affine primary of a lowest weight representa-

tion, and other states obtained by acting on it with the zero-modes of the algebra,

are the states in the representation that have the lowest conformal weight. Hence,

we can derive a semi-classical version of formula (6.59) by considering all solutions

with a given monodromy and minimizing their conformal weight. Consider, the right

moving part of a classical solution of the SU(2) WZW model, which we parameterize

as in (6.30)

g2(x−) = e−i
φ1(x−)−φ2(x−)

2
σ3eiζ(x

−)σ2e−i
φ1(x−)+φ2(x−)

2
σ3 , (6.60)

with the boundary condition:

g2(x− + 2π) = eiσ3νg2(x−). (6.61)
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We can obtain the currents of this group element using the formulae in (6.35). We

find that the zero-modes of the stress energy tensor and Kz current are given by

L
SU(2)
0 =

1

2πk

∫ 2π

0

(
cos2 ζ(φ′1)2 + sin2 ζ(φ′2)2 + (ζ ′)2

)
dx−,

Kz
0 =

k

2π

∫ (
cos2 ζφ′1 + sin2 ζφ′2

)
dx−.

(6.62)

If we minimize the conformal weight in (6.62) subject to the boundary condition

(6.61) then we find that the minimum is reached at:

ζ = constant,

φ′1 = −φ′2 =
ν

2π
x−,

L
SU(2)
0 =

ν2

(4π)2k
.

(6.63)

If we now use the fact that an affine primary of weight j has conformal weight, j(j+1)
k+2

,

we find the semi-classical relation

ν ∼ 2jπ

k
. (6.64)

where the ∼ indicates that this relation is semi-classical. Quantum fluctuations will

modify this relation to the exact equation (6.59). The formula (6.63) is valid as long

as ν ≤ π (otherwise, it is shorter to go around the sphere the ‘other way’), which is

consistent with the fact that the lowest weight affine primaries of the SU(2) affine

algebra are capped at j = k
2
.

To see the significance of the constant value of ζ in (6.63), we calculate on this

solution:

Kz
0 = cos(2ζ)

kν

2π
= cos(2ζ)j. (6.65)

The possible values of Kz
0 for the lowest conformal weight of (6.63) range from

[−j,+j]. This is what we expect since all states in the SU(2) representation built by
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acting with the zero-modes of the affine algebra on the affine primary have the same

conformal weight. They are distinguished by their eigenvalues under Kz
0 and these

eigenvalues can range from −j . . . j for an affine primary of weight j. The highest

value of j is what corresponds to the affine primary, as we defined it above, and this

is obtained at ζ = 0.

Now, we notice a remarkable fact. At this value of ζ, the solution (6.63) is exactly

the form that the right-moving sector, in the zero winding sector, takes in (6.46). This

suggests that the solutions (6.46), for J̃z0 <
k
2

correspond to states that, on the right

moving side, are affine primaries of SU(2). The solutions with J̃z0 >
k
2

can always be

obtained from these solutions by means of the spectral flow operation (6.48). Hence,

the solutions with J̃z0 >
k
2

correspond to states that are obtained by spectrally flowing

an SU(2) affine primary using (5.56).

We can repeat the semi-classical analysis above for the SL(2, R) affine algebra.

Consider a curve in SL(2, R) parameterized by:

g1(x−) = ei
t(x−)+θ(x−)

2
σ2eρ(x−)σ3ei

t(x−)−θ(x−)
2

σ2 . (6.66)

As we explained above, SL(2, R) has three types of conjugacy classes. However, the

solutions of (6.46) have a monodromy that belongs to an elliptic conjugacy class.

Hence, we will consider the boundary condition:

g1(x− + 2π) = eiσ2νg1(x−). (6.67)

This time, we have:

L0 =
1

2πk

∫ 2π

0

(− cosh2 ρt′2 + sinh2 ρθ′2 + ρ′2) dx−,

Jz0 =
k

2π

∫ 2π

0

(cosh2 ρt′ − sinh2 ρθ′2) dx−.

(6.68)
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The group parameterization (6.66) admits curves that wind around the ‘time’ direc-

tion but restricting to the zero winding sector, we would find that the solution that

minimizes the conformal weight is:

ρ = constant,

t′ = −θ′ = ν

2π
x−.

(6.69)

This solution has conformal weight, and Jz0 eigenvalue:

L
SL(2,R)
0 = − ν2

4π2k
, Jz0 = cosh 2ρ

kν

2π
. (6.70)

The value of L
SL(2,R)
0 above corresponds to the lowest conformal weight possible in a

discrete unflowed representation D̂0,j with

ν ∼ 2jπ

k
. (6.71)

Repeating the argument of [127] for the SL(2, R) affine algebra yields the quantum

result:

ν =
2j − 1

k − 2
π. [SL(2,R)] (6.72)

As above, the formula (6.69) is valid for j ≤ k
2

which tells us that we should consider

the discrete unflowed representations D̂0,j only for j < k
2
. The value of Jz0 in (6.70),

can range from j . . .∞ which is exactly what we expect. The affine primary itself,

corresponds to the lowest possible value of j which corresponds to ρ = 0 in (6.69). At

this value of ρ, the solution (6.69) becomes identical to the right-moving solution of

(6.46). Hence, we conjecture that the solutions (6.46) correspond, on the right-moving

side, to affine primaries of discrete representation of the SL(2, R) affine algebra or to

spectral flows of these.
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As we mentioned above, there are two other types of conjugacy classes of SL(2, R).

The hyperbolic conjugacy classes, in particular, correspond to solutions that have

monodromy esσ3 . The minimum conformal weight for classical solutions with this

boundary condition is L
SL(2,R)
0 = s2

4π2k
. Hence, solutions with this monodromy corre-

spond to states in continuous representations. The solutions of (6.46), when Jz0 = k
2

are then at the bottom of a continuum i.e we can reach the continuum by moving

infitesimally away from supersymmetry. We will have more to say on this below.

We are now in a position to identify the solutions of (6.46) with 1
4

BPS states in

spacetime. Recall that we are looking for states of the form |anything〉|chiral primary〉.

The classical solutions of (6.46) also have this form. They have a very special struc-

ture on the right-moving side and an arbitrary solution on the left moving side. It is

then natural to conjecture the following

1. Left (Right) movers on the worldsheet give rise to left (right) movers in space-

time.

2. A chiral primary in spacetime is constructed either (a) by taking the affine

primary, of a discrete SL(2, R) representation D̂j and combining it with an

affine primary of the SU(2) representation Lj 7 or (b) by spectrally flowing a

state of this form by w units.

3. The arbitrary left-moving side of (6.46) is subject to global constraints from

the right-moving side. Semi-classically, we see that this left-moving state must

7In the exact analysis of Section 6.5, we find that this construction must be modified slightly.
We need to combine the affine primary of D̂j+1 with the affine primary of Lj and dress the state
with fermion zero modes
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belong to the sector D̂j,w × Lj′ ×H0(Mp,q) of the sigma model on SL(2, R)×

SU(2) ×Mp,q. Here, j′ = j, if w is even and j′ = k
2
− j otherwise. Of course,

we need to impose the left-moving physical state conditions as well.

4. It appears that at special values of the charges, when the right-moving chiral pri-

mary has j = kw
2

(recall that according to point (2) above all such right-moving

chiral primaries in spacetime are related by spectral flow on the worldsheet) we

obtain states that are the bottom of continua.

6.4.3 Semi-Classical Analysis of Supersymmetric States

We will now verify the conjecture above by checking that the states described

above do indeed obey the physical state conditions and BPS relation and also discuss,

in more detail, the structure of the arbitrary states that appear on the left-moving

side. Classically, we need to impose the constraints (6.28). Quantum mechanically,

we will demand that physical states |a〉 satisfy Ln|a〉 = 0 and we will mod out by

spurious states of the form |a〉 = L−n|b〉. What about the mass-shell condition? In

passing from classical solutions to quantum states, since we are interested only in the

spectrum, we have the freedom to choose normal ordering constants. This issue is

discussed in some more detail in the next section. In this subsection, since we are in

a regime where all charges are large compared to 1, we will not be too precise about

this and work with a semi-classical mass-shell condition L0|a〉 ∼ 0.

First, consider the construction of chiral-primaries in the zero winding sector.

Consider a right moving state |cj,0〉 that is an affine primary of Lj and an affine
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primary of D̂0,j and in the ground state in Mp,q. Then,

L̃0|cj〉 = (L̃
SL(2,R)
0 + L̃

SU(2)
0 )|cj,0〉 ∼ (−j

2

k
+
j2

k
)|cj,0〉 = 0,

L̃n|c〉 = (L̃SL(2,R)
n + L̃SU(2)

n )|cj,0〉 = 0,

(J̃z0 − K̃z
0 )|cj,0〉 = (j − j)|cj,0〉 = 0.

(6.73)

So, |c〉 obeys the physical state and supersymmetry conditions. This state cannot

be written as a conformal descendant on the worldsheet. Hence it is not spurious.

So, it gives us a good description of a spacetime chiral primary. Semi-classically, it

appears that j runs over all the values 0 ≤ j < k
2

in half-integral steps. The exact

analysis of the next section shows us that we actually obtain a series where j runs

over 1
2
, 1, . . . k

2
− 1

2
.

Now, notice that, given a state that satisfies the physical state and supersymmetry

conditions above, the transformations (5.56) take us to another state that also satisfies

these conditions. So the state |cj,w〉 obtained by simultaneously spectral flowing |cj,0〉

by w units in both SL(2, R) and SU(2) is also a good spacetime chiral primary. Note

that this process of spectral flow merely extends the series above, from 1
2
. . . k

2
− 1

2
to

kw
2

+ 1
2
. . . k(w+1)

2
− 1

2
.

This leaves behind gaps at the values kw
2

. This is exactly the value of Jz0 , where

the monodromy of the solutions (6.46) becomes 1. It is also the charge assignment for

which we explained, in section 6.2, that classical probe brane solutions could escape

to infinity. It is tempting to believe then, that at these values of Jz0 then, the chiral

primaries lie at the bottom of a continuum. We will discuss this further in a moment.

Continuing with our discussion of discrete states, let us denote the state on the left-

moving side as |a〉 (for ‘arbitrary’). The global constraints of the spectrum described
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above, mean that that

|a〉 ∈ D̂j,w × Lj̄(w) ×H0(Mp,q), (6.74)

where j̄(w) = j if w is even and k
2
− j if w is odd. In addition, we must impose the

physical state conditions

Ln|a〉 = 0,

L0|a〉 ∼ 0.

(6.75)

To write an energy formula for |a〉, it is convenient to consider the state |a−w〉 ob-

tained by spectral flowing |a〉 by −w units. This takes us to the zero-winding sector in

SL(2, R) and to the representation Lj in SU(2). Note, that the physical state condi-

tion implies Ln>0|a−w〉 = 0. Now, |a−w〉 may be indexed by its level in SL(2, R), N ,8

its level in SU(2),h2, its level in the internal CFT onMp,q, hint and its Jz0 eigenvalue,

j + Q and its Kz
0 eigenvalue j + P . Q can be negative because, for example, we can

act with J−−1 on the lowest weight state, but we have the constraint that Q ≥ −N .

P can be negative too, because we can act with K−0 on the lowest weight state.

So, the mass shell condition for |a〉 then reads:

L0|a〉 =

(
−(j + kw

2
)2

k
− wQ+

(j + kw
2

)2

k
+ wP +N + h2 + hint

)
|a〉 = 0

⇒ Q = P +
N + h2 + hint

w
.

(6.76)

8By ‘level’ here, we mean the oscillator level which is the difference in the conformal weight of
the state and the conformal weight of the zero mode. For example, a state |Ω〉 ∈ D̂j,w has level:
(LSL(2,R)

0 + j(j−1)
k−2 )|Ω〉 ≡ N |Ω〉
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Finally, we may write the spacetime charges of the state |a〉|cw,j〉 as

E = Jz0 + J̃z0 = (j +
kw

2
) + (j +Q+

kw

2
),

= 2j + kw + P +
N + h2 + hint

w
,

L = Jz0 − J̃z0 = P +
N + h2 + hint

w
,

J1 = Kz
0 + K̃z

0 = 2j + P + kw,

J2 = Kz
0 − K̃z

0 = P.

(6.77)

The degeneracy of states with a given value of h2, P and hint is given to us by the

partition functions for the SU(2) WZW model and the internal CFT. There remains

the issue of the degeneracy of,non spurious, states with a given value of N,Q that

obey the physical state conditions (6.75). If we are interested only in the degeneracy

and not in the actual construction of physical states, the formula for the spacetime

partition function in the next section tells us to proceed as follows:

1. Consider the affine primary of D̂j and act on it with the oscillator modes

J+
n≤0, J

−
n<0, never acting with Jzn<0. Let us call this set Z. Now, consider the

states obtained by spectral flow of the states in Z by w units. Call this set Zw.

2. Consider the states in the tensor product Zw × Lj̄(w) ×H0(Mp,q). Decompose

the character of this tensor product into representations of the Virasoro algebra

[6], pick out Virasoro primaries and impose the mass shell condition L0 ∼ 0.

The procedure above is valid for all states that lie in discrete representations and

we have argued this is true for almost all assignments of charges. We now turn to the

case where J̃z0 = E−L
2

= kw
2

. As we explained in section 6.2, at this value of the charge,

the giant graviton solution can go off to infinity. This infinite volume factor means
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that, upon quantization, the probability that a probe brane with these charges will

be found at any finite value of ρ is infitesimally small. Hence, to quantize solutions

that have this value of E − L we may simplify the formulae of Table 5.2 by taking

the ρ → ∞ limit. Furthermore, since at infinity, such a solution must wrap the θ

direction to have finite energy, we set θ′ = w. The remaining dynamical variables are

ρ, ζ, φ1, φ2, z
a and we have:

Pρ = − k

2π
ρ′, Pζ =

−k
2π

ζ ′, Pza =
−k
2π

[
gintab z

b′
]
,

P̃φ1 =
k

2π

[
− cos2(ζ)(φ′1 − w/2) + sin2(ζ)(φ′2 − w/2) +

w

2

]
=
kw

2π
− P̃φ2 .

(6.78)

All the complicated couplings between the different degrees of freedom have vanished

in the ρ → ∞ limit! Quantizing the za and their conjugate momenta leads, as we

explained in Section 6.2, to the left-moving sector of the non-linear sigma model on

Mp,q. Quantizing ζ, φ1, φ2 leads as one may expect to the left moving sector of the

SU(2) WZW model at level k. The ρ theory gives rise to a U(1) theory. In terms

of this U(1)× SU(2) theory, the spacetime energy and angular momentum are given

by:

E = kw +
Nρ + h2 + hint

w
, L =

Nρ + h2 + hint

w
. (6.79)

where h2, hint are as above and Nρ is the level of the U(1) theory.

In fact this U(1)×SU(2) theory is nothing but the theory of long-strings studied in

[79].9 We refer the reader to that paper for details but recount two salient conclusions.

First, the U(1)× SU(2) theory admits a N = 4 supersymmetric extension To obtain

this we need to improve the U(1) model with a linear dilaton term that increases the

central charge of the supersymmetric U(1)×SU(2) model to 6(k−pq). Now, with the

9A closely related theory was studied in [117, 116, 115]
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N = 4 supersymmetric sigma model onMp,q we have a N = 4 superconformal theory

on the worldsheet and it is not hard to show from here that the entire superconformal

symmetry carries over from the worldsheet to spacetime via (6.79).

We also notice that the N = 4 theory in the NS sector we have obtained above

may be obtained by performing spectral flow in spacetime (to be distinguished from

spectral flow on the worldsheet, that we have been discussing), on the theory of long-

strings in the background of the zero mass BTZ black hole (the Poincare patch of AdS3

with a circle identification) that was discussed in [120]. However, the quantization

of strings in that background did not yield any of the discrete states that we have

found in global AdS. This provides further evidence for the argument made in [77]

that the Poincare patch is not the correct background dual to the Ramond sector of

the boundary theory.

We can also obtain the energy formula above using the analysis of states in contin-

uous representations in [113] and this analysis shows us that they lie at the bottom of

a continuum. The measure for continuous representations was worked out in [114] and

since the supersymmetric states above correspond to a particular point (the bottom)

and not to a range in the continuum, they are actually of measure zero.

Nevertheless, semi-classically we seem to have a complete story. For generic

charges, 1
4

BPS states occur in discrete representations with an energy given by (6.77)

and at special values of the charges, where the classical solutions can escape to in-

finity, they appear at the bottom of a continuum with energy given by (6.79). In

the exact analysis of the D-string carried out in Section 6.5, this story is almost

completely borne out except for the puzzling fact that the measure for continuous
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representations vanishes in a neighbourhood of the point where we expect to find

supersymmetric states. This leads to missing chiral primaries at special values of

charges. We discuss this issue and the implications of the observation above for the

elliptic genus in the next section.

Half-BPS States

We have provided a semi-classical description of 1
4

BPS states above. We now dis-

cuss 1
2

BPS states in spacetime. These are of the form |chiral primary〉|chiral primary〉.

We will denote them by |jL, jR〉 where jL, jR are the R-charge values on the left and

the right.

It is easy to construct such states on the worldsheet. They are merely, states

of the form |cj,w〉|cj,w〉. For concreteness, consider a D-string so that k = Q5. The

discussion above tells us that semi-classically, we should expect a chain of such states.

First, we consider w = 0 and all possible values of j. This leads to chiral states in

spacetime of the form |j, j〉 with values of 1
2
≤ j ≤ Q5−1

2
. Now, we spectral flow these

states to obtain states of the form |j + Q5w
2
, j + Q5w

2
〉. There are gaps in the chiral

primary spectrum at j = Q5w
2

because at these values the chiral-primaries lie in the

continuum as we discussed above. The ‘exclusion principle’ tells us that we must

restrict to w ≤ Q1. This semi-classical picture captures all the essential features of

the exact analysis that we perform in the next section. The inclusion of fermionic

zero-modes gives a degeneracy to each element of this chain. Furthermore, it is also

possible to have jL = jR ± 1
2
. The exact spectrum is worked out in the next section.

Somewhat more curiously, we seem to get a copy of this series of 1
2

BPS states
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from each kind of (p, q) probe. However, this is not a surprise when we recall that

the probe solutions corresponding to chiral-chiral primaries are geodesics that do

not know anything of the internal structure of the probe. Hence, to obtain the

correct spectrum of half-BPS states on the boundary, we should count the chiral-

primaries only once and not repeatedly. The simplest way to avoid over-counting is

to consider the chiral primaries obtained from the single and multi-particle states of

the D-string. In the next section, we show how the 1
2

BPS spectrum of the boundary

theory may be reproduced this way. We could also use a different probe although

chiral primaries obtained from a multi-particle state of the D-string may be the same

as chiral-primaries obtained from a single particle state of a more complicated probe.

6.5 Exact Analysis of the D-string

In this section, we will analyze the exact spacetime partition function for the D-

string. When the string coupling is large in the D-brane picture, Q1 >>
vQ5

g2 , we

can perform a S-duality to obtain a weakly coupled F-NS5 system. The motion of D-

strings in global AdS3×S3 with RR fluxes but no NS fluxes is dual to the propagation

of F-strings in AdS3 × S3 with NS fluxes but no RR fluxes. This system has been

widely studied. For some early studies of string propagation on AdS3 and its relation

to the AdS/CFT correspondence, see [126, 134, 135]. In this section, we will rely

heavily on the papers [113, 114]. Please also refer to these papers for a review of the

early literature on string theory on AdS3. For later studies, see [136, 137, 138]. The

supersymmetric extension of the partition function of [114] that we will use here was

studied in [139].
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For ease of presentation, we will work in the background AdS3 × S3 × T 4. The

calculations we perform here may be easily repeated for K3, and none of the results we

will obtain here are affected. Our plan of attack will be to generalize the spacetime

partition function of the bosonic string calculated in [114] to the superstring. By

taking various limits of this partition function, we will then obtain expressions for

the degeneracies of 1
4

BPS states and 1
2

BPS states. We will also discuss the elliptic

genus. This section contains several messy manipulations with infinite products that

we relegate to Appendix 6.A leaving only the results for the main text.

We start with the formula for the spacetime partition function of the bosonic

string, derived in [114]. In terms of the AdS energy, E, and angular momentum L,

the levels of the boundary CFT are given by [57]

Lb0 =
E + L

2
, L̃b0 =

E − L
2

. (6.80)

Then

Z(β, β̄) = Trsingle−particlese
−βLb0−β̄L̃b0

=
b(Q5 − 2)1/2

8π

∫ ∞
0

dτ2

τ
3/2
2

∫ 1/2

−1/2

dτ1e
4πτ2(1− 1

4(Q5−2)
)
ZSU(2)(q, q̄)Zint(q, q̄)

× e−(Q5−2)b2/4πτ2

| sinh(β/2)|2

∣∣∣∣∣
∞∏
n=1

1− qn

(1− eβ̂qn)(1− e−βqn)

∣∣∣∣∣
2

,

(6.81)

where, q = e2πiτ , τ = τ1 + iτ2. The formula above is valid when b ≡ Re(β) = Re(β̄) >

0. Here, Zint/SU(2) = TrT 4/SU(2)(q
Lb0 q̄L̃

b
0). Notice the absence of the usual c

24
shift.

This zero point energy has already been taken into account in (6.81).

Let us expand some of the terms in the formula above. First, we consider the

SU(2) partition function. We will denote the level of this model by k − 2. At this

level, the character of the representation Lj, built on an affine primary with weight j
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is given by[112]:

χk−2
j (τ, ρ) = tr(qL

SU(2)
0 zK

z
0 ) =

q
1
8
− 1

4k

∑
n∈Z q

(j+ 1
2 +kn)2

k (zj+
1
2

+kn − z−(j+ 1
2

+kn))

iθ1(ρ, τ)
, (6.82)

where, z = e2πiρ.

Naively, one may think that the formula above has a pole of order 1 when z = qw

where w ∈ Z. However, this is not the case, because the numerator also vanishes for

this assignment of chemical potentials. The formula above is valid whenever |q| < 1.

The partition function of the bosonic SU(2) WZW model, at level k − 2 is given by

Zk−2
SU(2)−bosonic(τ, ρ) =

k/2−1∑
j=0

|χk−2
j (τ, ρ)|2. (6.83)

The spacetime SU(2) charges are measured by the worldsheet SU(2) charges, and in

the notation of Table 5.2, the spacetime SU(2) angular momenta JL, JR are given by

JR =
J1 + J2

2
= K̃z

0 , JL =
J1 − J2

2
= Kz

0 . (6.84)

Next, we need to include fermions and generalize the expression to the superstring.

As explained in [126] and references therein, the addition of fermions in the SL(2, R)

and SU(2) WZW models is simple. We obtain decoupled fermionic and bosonic WZW

models, except that the level of the bosonic SL(2, R) model is shifted to Q5+2 and the

level of the bosonic SU(2) model is shifted to Q5− 2. To generalize expression (6.81)

then, we merely need to add in the worldsheet partition function for the fermions and

alter the zero-point energies and levels appropriately. This is done in Appendix 6.A

which also discusses the sum over R-NS sectors and the GSO projection. The final

ingredient we need is the worldsheet partition function of the internal T 4.
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Putting all of this together we find that the full partition function of a F-string

propagating in AdS3 × S3 × T 4 with Q5 units of NS flux is given by

Z(β, β̄, ρ, ρ̄) = Trsingle−particlese
−βLb0−β̄L̃b0−ρJL−ρ̄JR

=
bQ

1
2
5

2π

∫
dτ2

τ
3
2

2

∫ 1
2

−1
2

dτ1


Q5
2
−1∑

j=0

∣∣∣∣∣∣
∑n∈Z q

(j+ 1
2 +Q5n)2

Q5 (zj+
1
2

+Q5n − z−(j+ 1
2

+Q5n))

θ1( iρ
2π
, τ)

∣∣∣∣∣∣
2

×

(∑
Γ4,4

qp
2
L q̄p

2
R

)∣∣∣∣∣
(
θ2(iβ+ρ

4π
)θ2(iβ−ρ

4π
)
)2

θ1( iβ
2π
, τ)η(τ)6

∣∣∣∣∣
2

e
−Q5

b2

4πτ2

 .
(6.85)

The theta functions can be decoded by looking in Appendix 6.B. The contribution

of the zero mode momenta and winding on the T 4 is contained in the sum over the

lattice Γ4,4. However, as in [140], we will focus on states that carry 0 charge under

pL and pR.

Some of the symmetry of the spacetime theory is already visible in (6.85). The

zero modes of the θ functions generate the global supergroup SU(1, 1|2). The zero

modes of the four theta functions in the numerator correspond to the action of 8 left

moving and 8 right moving supercharges. The zero modes of the theta functions in

the denominator correspond to the action of K−0 and J+
0 .

It is not hard to repeat the calculation of the partition function above for K3; if

we work at a value of K3 moduli where K3 is just T 4/Z2, then we merely need to

modify the T 4 partition function above by adding in twisted sectors and projecting

onto invariant states. This will add 3 more terms to the last line of (6.85), lead to

a different spectrum of chiral primaries below and give a finite result for the elliptic

genus. However, none of our conclusions or puzzles below are affected.
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6.5.1 1
4 BPS Partition Function

The 1
4

BPS partition function for the D-string is obtained from the formula (6.85)

by taking the limit β̄ → ∞, ρ̄ → −∞ keeping β̄ + ρ̄ = −µ finite. It is shown in

Appendix 6.A that in this limit we can ignore all right-moving oscillator contributions.

It is then possible to do the integral over τ2 in (6.85) and the remaining integral over

τ1 then just provides a level matching condition.

Let us define the function f by:

θ2(u−v
2
, τ)2θ2(u+v

2
, τ)2

−iθ1(u, τ)η(τ)6
χQ5−2
j (τ, v) =

∑
Q,P,h

fj(Q,P, h)e2πiuQe2πiv(P+j+ 1
2

)e
2πiτ{ j(j+1)

Q5
+h}

,

(6.86)

where we expand the left hand side in the regime where 0 < Im(u) < Im(τ). Note,

that at any given power of q = e2πiτ , the expansion in powers of z = e2πiv terminates

after a finite number of terms. In terms of this function f , the 1
4

BPS partition

function is given by a remarkably simple formula.

Z 1
4
(β, ρ, µ̄) = 4 cosh2 µ̄

4

∑
w≥0

Q5
2
−1∑

j=0

e−µ̄(j+
Q5w

2
+ 1

2
)

×
∑

w(Q− P )

−h = 0

fj(Q,P, h)e−β(Q+j+ 1
2

+
Q5w

2
)−ρ(P+j+ 1

2
+
Q5w

2
).

(6.87)

Comparing this with (6.77), if we redefine j → j+ 1
2

we find exact agreement with the

formulae for the charges given there. Thus we see, as promised, that the semi-classical

formula in section 6.4 has given us an exact answer with all factors of 1 correct, at

least for the D-string. It is tempting to conjecture that this is also the case for (p, q)

strings.

Note that, for w > 0, we may replace Q in the second line by Q = P + h
w

. For
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w = 0, the sum runs over terms that have h = 0. These terms come from the zero

modes in the theta functions in (2.38) and give us the graviton multiplets described

in [122].

Although we have written the sum (6.87) over all positive w, the exclusion principle

proposed in [125] along the lines of [93, 122] instructs us to cut off this sum at w = Q1.

6.5.2 1
2 BPS Partition Function

Now we will try and obtain the spectrum of chiral-chiral states. To do this, in

addition to the limit above, we need to take the limit β → ∞, ρ → −∞, keeping

β + ρ = −µ finite. It is shown in Appendix 6.A that in this limit, we can ignore all

contributions from the theta functions except for the zero modes of θ2(iβ+ρ
4π

) in (6.85).

The character for the chiral primaries then becomes:

Z 1
2
(µ, µ̄) =trchiral−primariese

µKz
0 +µ̄K̃z

0

= lim
bQ

1
2
5

2π

∫
dτ2

τ
3
2

2

∫ 1
2

−1
2

dτ1

e
−Q5b

2

4πτ2

Q5/2−1∑
j=0

∣∣∣q(j+ 1
2

+Q5n)2/Q5

(
zj+

1
2

+Q5n − z−(j+ 1
2

+Q5n)
)(

2 cosh2 µ

4

)∣∣∣2
=
∑
n∈Z+

Q5/2−1∑
j=0

(
2

(
t

1
2 +

1

t
1
2

+ t̄
1
2 +

1

t̄
1
2

)
+ 4 +

t
1
2

t̄
1
2

+
t̄

1
2

t
1
2

+ t
1
2 t̄

1
2 +

1

t
1
2 t̄

1
2

)
(tt̄)j+

Q5n
2

+ 1
2 ,

(6.88)

where t = eµ. This is in agreement with [141]. This analysis can easily be repeated

for K3 to obtain a spectrum in agreement with [123, 122]. If we apply the exclusion

principle mentioned above, then the highest power of t that appears above is Q1Q5

2
.

Notice, though that the chiral primaries that correspond to j = Q5/2 in the series
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above are not present. We expect this from our semi-classical analysis above. On the

boundary, these missing chiral primaries result from the small instanton singularity

[79]; in the bulk this phenomenon was first noticed in [125]. There, it was suggested, as

we reasoned above, that these missing chiral primaries disappear into the continuum.

Let us examine this hypothesis. In Appendix 6.A we show that chiral primaries

can occur in the continuous spectrum if the condition

j +Q5n+
1

2
=
Q5w

4
+

1

w
(
s2

Q5

+
(j +Q5n+ 1

2
)2

Q5

) (6.89)

is met with w being some integer. This can only happen if:

s = 0,

j +Q5n+
1

2
=
Q5w

2
.

(6.90)

This appears promising before we realize that this condition cannot be met because

the sum over j runs from 0 . . . Q5

2
− 1. We discuss this issue further in Section 6.5.4.

6.5.3 Elliptic Genus

We now turn to a study of the elliptic genus. The elliptic genus is defined as

E(β, ρ) = tr{e−βLb0−ρJL−β̄(L̃b0−JR)(−1)2JR}. (6.91)

The chemical potential β̄ is purely formal; the elliptic genus is independent of this

parameter.

For T 4 the elliptic genus vanishes due to fermion zero modes. Although, we could

repeat this calculation for K3 to obtain a finite elliptic genus, we will instead consider

the quantity:

E2(β, ρ) = tr{e−βLb0−ρJL−β̄(L̃b0−JR)(−1)2JRJ2
R}. (6.92)
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This quantity was defined and studied in [140], specifically to study BPS states in

toroidal string theory. The trace is taken only over states that have no U(1)4 charge.

In the formula of (6.85) this instructs us to drop the sum over Γ4,4. We then find:

E2(β, ρ) =
∂2Z 1

4
(β, ρ, µ̄)

∂µ̄2

∣∣∣∣∣
µ̄=2πi

=
1

2

∑
w≥0

Q5
2
−1∑

j=0

∑
w(Q− P )

−h = 0

(−1)2jfj(Q,P, h)e−β(Q+j+ 1
2

+
Q5w

2
)−ρ(P+j+ 1

2
+
Q5w

2
).

(6.93)

Notice, that several cancellations occur in the expression above because of the term

(−1)2j above.

6.5.4 Comparison to the Symmetric Product

Before we compare our results for the elliptic genus and the 1
2

BPS partition

function to the symmetric product, let us briefly review some known results. In

[123, 122], de Boer found the spectrum of gravitons in AdS3×S3×K3 and organized

it into short representations of the relevant AdS supergroup SU(1, 1|2)L×SU(1, 1|2)R.

His results may be generalized to T 4, and in that case the spectrum of single-particle

gravitons described above consists of the 1
2

BPS states of Section (6.5.2) and their

descendants under the generators of this global supergroup. In formula (6.85), the

action of these global generators is seen in the zero-modes of the theta functions.

Now, two results were obtained in [122] (See, also [142]). First, it was found that the

spectrum of chiral-chiral primaries of the symmetric product up to energies Q1Q5

2
could

be found by multi-particling the spectrum of single particle chiral-chiral primaries of

supergravity subject to a suitable exclusion principle. Second, with an extension of
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this exclusion principle, it was found that the elliptic genus of supergravity also agreed

with the elliptic genus of the symmetric product till the energy Q1Q5

4
. For the case of

T 4 a similar result regarding the modified Index (6.92) was proved in [140].

These results are surprising, because naively one would expect supergravity to be

valid till an energy Q5 (assuming Q5 < Q1), and expect stringy effects to take over

beyond that. Indeed, from formula (6.87), we see that the 1
4

BPS spectrum of the

string theory agrees with supergravity till energies of order Q5 (i.e in the zero-winding

sector) but disagrees for energies larger than that.

However, the result of section 6.5.2 shows, as was expected from the semi-classical

analysis of Section 6.3.4, that the 1
2

BPS spectrum of the full string theory agrees with

the 1
2

BPS spectrum of supergravity up to an energy Q1Q5

2
, barring some missing chiral-

primaries. Modulo this complication, the calculation of [122] shows us that multi-

particling the spectrum of Equation (6.88) with an appropriate exclusion principle

at high-energies will reproduce the spectrum of chiral-chiral states of the symmetric

product.

The issue of missing chiral-primaries acquires greater urgency in a consideration

of the elliptic genus.10 From (6.93), we see that for left moving conformal weight

larger than Q5

2
, the elliptic genus contains contributions from 1

4
BPS states that are

not seen in supergravity. Hence, multi-particling this spectrum leads to a mismatch

with the elliptic genus of the symmetric product. This, however, does not contradict

any theorem because as we have mentioned the boundary theory is singular on this

submanifold of moduli space and has a continuum in its spectrum; this invalidates

10Here, we are tacitly assuming that we are on K3. For T 4 where the elliptic genus vanishes,
everything in our discussion is valid with “elliptic genus” replaced by the modified Index (6.92)
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the Index theorems that protect the elliptic genus [143].

By modular invariance, the high temperature behaviour of the elliptic genus is

dominated by the lowest energy supersymmetric states in the spectrum. Since these

new 1
4

BPS contributions appear after an energy gap, their effect on the high temper-

ature behaviour is exponentially subleading. So, they do not affect entropy counting

calculations. However, it would be interesting to understand the physical interpreta-

tion of these subleading contributions in the spirit of [124]. An interesting possibility

is that these subleading terms correspond to multi black holes.

As we deform the theory away from this point in moduli space, the continuum

must resolve to give rise to new 1
4

BPS states |anything〉|chiral primary〉 with chiral

primaries corresponding to j = Q5

2
in the sum (6.88). This is necessary to supply the

missing 1
2

BPS states and the right 1
4

BPS states to cancel the extra terms in (6.93).

Schematically, this happens as follows.

On this submanifold of moduli space, the single particle partition function of string

theory may be written as

Z(β, β̄, ρ, ρ̄) =
∑
h,h̄,r,r̄

n(h, h̄, r, r̄)e−βh−β̄h̄−ρr−ρ̄r̄ +
∑
r,r̄

∫
ρ(h, h̄, r, r̄)e−βh−β̄h̄−ρr−ρ̄r̄ dhdh̄,

(6.94)

which represents the contributions from both the discrete and continuous representa-

tions. We have seen that the second term does not contribute to the 1
4

BPS partition

function because

ρ(h, h̄, r, h̄) = 0, ∀h, h̄, r. (6.95)

Now, the energy formula (6.89) does allow states with r̄ = h̄ to exist in continuous

representations. The reason the measure above vanishes for these states is that in
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the SU(2) WZW model at level Q5 − 2, there is no lowest weight representation of

weight Q5

2
− 1

2
. In fact, from formula (6.82), we see that

χQ5−2
Q5
2
− 1

2

(τ, ρ) = 0,∀τ, ρ. (6.96)

The character of a representation may be obtained by symmetrizing the character of

the corresponding Verma module over the Weyl group to remove null states [144]. So,

loosely speaking we can interpret (6.96) to mean that all states in this representation

are null.

As we deform the theory away from this point in moduli space, we can imagine

the supersymmetric spectrum changing via a two step process. In the first step, the

continuum resolves into discrete states

∑
r,r̄

∫
ρ(h, h̄, r, r̄)e−βh−β̄h̄−ρr−ρ̄r̄ dhdh̄→

∑
h,h̄,r,r̄

n′(h, h̄, r, r̄)e−βh−β̄h̄−ρr−ρ̄r̄. (6.97)

And in the second step 1
4

BPS discrete states combine into long representations leaving

behind a reduced supersymmetric spectrum.

However, as we move away from this point in moduli space by turning on RR

fields, we also deform the worldsheet current algebra. Under such a deformation, the

RHS of (6.96) may jump from zero. Then, (6.89) tells us that it is possible that

n(h, h̄, r, h̄) 6= 0, for h̄ ∈ {Q5w

2
,
Q5w

2
± 1

2
}, (6.98)

where w is a positive integer. These new discrete states could provide the miss-

ing chiral-primaries and also pair up with the extra 1
4

BPS states to remove them

from the supersymmetric spectrum. It would be nice to have a more quantitative

understanding of this process.
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6.5.5 Higher Probes

The partition function for the entire theory is obtained by summing, not only over

states of the D-string but also over the more complicated (p, q) probes. Now, if we

take the action (6.27) with the substitutions (6.29) seriously, and attempt to quantize

it like the fundamental string, we are left with a theory that, for a generic (p, q) probe,

has too large a central charge. This is not a surprise, because the manipulations that

led to (6.29) were classical in nature. A bona-fide analysis of supersymmetric states

in these higher probes must start with the worldvolume theory of the D5 brane.

However, the semi-classical analysis of Section 6.2 and the analysis of long-strings

in Section 6.4 suggest a possible resolution. In formulae (6.20), (6.26), (6.79) the

non-linear sigma model on Mp,q made its appearance. In the bosonic case, it seems

possible to generalize the exact analysis of the D-string by simply substituting the

bosonic partition function ofMp,q in place of Zint in formula (6.81), without changing

the zero-point energy (the coefficient of τ2 in the exponent) at all.

To understand this better, consider the following analogy. Say, we are trying to

quantize a bosonic string in d dimensions, where d is not necessarily 26. Let us choose

light cone gauge, and impose the mass-shell condition (L0 − 1)|Ω〉 = 0. This leads to

a spectrum that is free of the Lorentz anomaly. At the massless level, we obtain a

representation of SO(d− 2) and at higher levels the spectrum reorganizes itself into

representations of SO(d−1). Of course, we cannot consistently introduce interactions

in this theory, but if we are interested only in the spectrum, this procedure leads to

a sensible result.

For our case, the supersymmetric spectrum can perhaps be obtained by appropri-
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ately supersymmetrizing this bosonic spectrum obtained in this manner.

We conclude this section with a speculative possibility. It is possible that if we

sum the contributions to the elliptic genus over all the different (p, q) probes, the

contributions from all states except for 1
2

BPS states cancel. To check this possibility,

however, we need to be able to exactly quantize the more complicated (p, q) probes.

This is a very interesting problem that we leave to future work.

6.6 Results

In this chapter, we first developed an alternative approach to classical probe brane

solutions in global AdS3, in terms of the ‘Polyakov’ action. We showed that the canon-

ical structure on the space of 1
4

BPS brane probes found in [120] was the same as the

canonical structure on the solutions (6.46) of the sigma-model (6.27) except that the

‘Polyakov’ approach also allowed us to identify the classical solutions corresponding

to 1
2

BPS states. We found that these states were described by geodesics that do not

see ‘stringy’ effects even at energies above Q1 and Q5. This explained several facts

about the spectrum of 1
2

BPS states that had, hitherto, been puzzles.

Second, the ‘Polyakov’ approach allowed us to recast the problem of quantizing

these supersymmetric probes as a problem of quantizing the sigma model (6.27) and

picking out the physical subsector of the Hilbert space. We followed this procedure

and found that, generically, the quantization of 1
4

BPS brane probes in global AdS3×

S3 ×K3/T4 leads to states in discrete representations of the SL(2, R) WZW model

with energy, given as a function of charges, by (6.77). Semi-classically, at special

values of the charges, the 1
4

BPS states are at the bottom of a continuum. Quantizing
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these probes leads to the long strings studied by Seiberg and Witten with energy

given as a function of charges by (6.79).

The presence of these discrete states in global AdS is in sharp contrast to the result

obtained by quantizing 1
4

BPS brane probes in the background of the zero mass BTZ

black hole (Poincare patch with a circle identification). There, we only obtain states

at the bottom of a continuum. So our results here bolster the argument made in [77]

that the Poincare patch is not the correct background dual to the Ramond sector of

the boundary theory.

Since, the 1
4

BPS brane probe solutions cease to exist if we turn on the bulk NS-NS

fields or theta angle, we concluded that this leads to a jump in the 1
4

BPS partition

function.

By exactly quantizing the D-string we verified the energy formula (6.77). Further-

more, by taking the appropriate limit of the 1
4

BPS partition function we obtained, in

equation (6.88), the spectrum of single particle chiral-chiral primaries of the D-string.

Modulo the issue of some ‘missing’ chiral primaries at special charges (that result from

singularities of the boundary theory at this point in moduli space), multi-particling

this spectrum reproduces the spectrum of chiral-chiral primaries of the symmetric

product. In section 6.5.3, we found that stringy 1
4

BPS states in discrete representa-

tions contribute to the bulk elliptic genus on the special submanifold of moduli space

where the background NS-NS fluxes and theta angle are set to zero. This leads to

subleading terms in the elliptic genus of the theory on this submanifold of moduli

space that are not present in the elliptic genus of the symmetric product. In Section

6.5.4 we showed that as we move away from this special submanifold, the continuum



Chapter 6: Supersymmetric States in AdS3/CFT2 II : Quantum Analysis 260

must resolve in a specific way to cancel these additional contributions and supply the

missing chiral primaries.

It would be of interest to extend our analysis of (p, q) bound state probes beyond

the semi-classical approximation. This is an important direction for future work.

6.A Technical Details of the Spacetime Partition

Function

In this appendix, we will fill in the details that lead to the results of section 6.5.

6.A.1 Partition function

To generalize the bosonic partition function (6.81) we need to add in fermions

and the βγ ghosts, sum over R-NS sectors, impose the GSO projection and explicitly

include the partition function of T 4.

First, consider the worldsheet partition function for the SL(2, R), SU(2) and T 4

fermions and βγ ghosts. For each of these, we can calculate the quantity:

Z(a, b)(β, ρ, τ) = Tr((−1)bF eρK
z−βJz+2πiτ(L0− c

24
),

ψ(σ + 2π) = (−1)aψ(σ).

(6.99)
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These partition functions are listed explicitly in the Table below.

Z(0, 0) Z(1, 0) Z(0, 1) Z(1, 1)

SL(2,R) fermions
θ2( iβ

2π
,τ)θ2(0,τ)

1
2

η(τ)
3
2

θ3( iβ
2π
,τ)θ3(0,τ)

1
2

η(τ)
3
2

θ1( iβ
2π
,τ)θ1(0,τ)

1
2

η(τ)
3
2

θ4( iβ
2π
,τ)θ4(0,τ)

1
2

η(τ)
3
2

SU(2) fermions
θ2( iρ

2π
,τ)θ2(0,τ)

1
2

η(τ)
3
2

θ3( iρ
2π
,τ)θ3(0,τ)

1
2

η(τ)
3
2

θ1( iρ
2π
,τ)θ1(0,τ)

1
2

η(τ)
3
2

θ4( iρ
2π
,τ)θ4(0,τ)

1
2

η(τ)
3
2

T4 fermions θ2(0,τ)2

η(τ)2

θ3(0,τ)2

η(τ)2

θ1(0,τ)2

η(τ)2

θ4(0,τ)2

η(τ)2

βγ ghosts θ2(0,τ)
η(τ)

θ3(0,τ)
η(τ)

θ1(0,τ)
η(τ)

θ4(0,τ)
η(τ)

(6.100)

Finally, the worldsheet fermionic partition function may be written as

Zfer(β, ρ, β̄, ρ̄, τ, τ̄)

=

∣∣∣∣∣θ2( iβ
2π

)θ2( iρ
2π

)θ2(0)2 − θ1( iβ
2π

)θ1( iρ
2π

)θ1(0)2 + θ4( iβ
2π

)θ4( iρ
2π

)θ4(0)2 − θ3( iβ
2π

)θ3( iρ
2π

)θ3(0)2

η(τ)6

∣∣∣∣∣
2

=

∣∣∣∣∣θ2(iβ+ρ
4π

)2θ2(iβ−ρ
4π

)2

η(τ)6

∣∣∣∣∣
2

.

(6.101)

where, in the last step, we have used the Riemann identity. We can think of this as

passing from the R-NS formalism to the Green Schwarz formalism.

6.A.2 The Integral

Chiral Primaries

Recall, as explained in [114] that the integral in (6.85) starts by writing

e
−kβ2

4πτ2 =
−8πi

β

(τ2

k

) 3
2

∫ ∞
−∞

dc ce
−4πτ2
k

c2+2iβc. (6.102)
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Now, notice that if we expand the other θ functions in (6.85) then, we will get an

exponent of the form

−4πτ2

k
c2 + i(β + β̄)c+ 2πiτ̄(

(j + kn̄+ 1
2
)2

k
+ ¯̀)− ρ̄(j + kn̄+

1

2
+ m̄2)− β̄m̄1

− ρ(j + kn+
1

2
+m2)− βm1 − 2πiτ(

(j + kn+ 1
2
)2

k
+ `)

(6.103)

Our notation is slightly different from [114]. The terms `, ¯̀, m̄1,m1, m̄2,m2 merely

come from expanding out all the terms in the partition function (6.85) and we will

consider them in more detail in a moment.

The integral over τ2 splits up into winding sectors, with the winding sector w

spanning the range b
2πw

< τ2 <
b

2π(w+1)
, where as usual b = Re(β). The integral over

c picks up poles at:

−c2

k
=

(j + kn̄+ 1
2
)2

k
+ `. (6.104)

In each winding sector, we have the constraint,

kw

2
< Imc <

k(w + 1)

2
, (6.105)

while the integral over τ1 yields the level matching condition

(j + kn+ 1
2
)2

k
+ ` =

(j + kn̄+ 1
2
)2

k
+ ¯̀. (6.106)

Consider the anti-holomorphic part of equation (6.103). Doing the integral over c

yields the term:

−β̄

m̄1 +

√
k(

(j + kn̄+ 1
2
)2

k
+ ¯̀)

− ρ̄(m̄2 + j + kn̄+
1

2
) (6.107)
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Now, note that for this term to survive in the limit β̄ = −ρ̄ + µ̄ → ∞ , we need to

have:

m̄2 + j + kn̄+
1

2
= m̄1 +

√
k(

(j + kn̄+ 1
2
)2

k
+ ¯̀). (6.108)

We will now show that this can happen, only if in the expansion of the partition

function, we include only ‘zero-modes’ and no ‘oscillator modes’. To lighten the

notation, define

t̄ = j + kn̄+
1

2
, δ = m̄2 − m̄1. (6.109)

If δ 6= 0 then equation (6.108) has a solution subject to the constraints (6.105) when

kw

2
< δ + t =

k ¯̀

2δ
+
δ

2
< k

w + 1

2
. (6.110)

This inequality implies δ > 0 and we will show, that in this case,

¯̀≥ δ(w + 1). (6.111)

Hence, the a solution to (6.108) can never be found, except at ¯̀= 0, δ = 0.

Let us write out some of the θ functions in (6.85) explicitly:

θ2(i β̄−ρ̄
4π
, q̄)2

θ1( iβ̄
2π
, q̄)θ1( iρ̄

2π
, q̄)

=
(1 + e

ρ̄−β̄
2 )2

(1− e−β̄)(1− eρ̄)

∞∏
n=1

(1 + q̄ne−
β̄−ρ̄

2 )2(1 + q̄ne+ β̄−ρ̄
2 )2

(1− q̄ne−β̄)(1− q̄neβ̄)(1− q̄ne−ρ̄)(1− q̄neρ̄)

= (−1)w
w∏
n=0

(e−
β̄−ρ̄

2 q̄−n + 1)2

(e−β̄ q̄−n − 1)(eρ̄q̄n − 1)

∞∏
n=w+1

(1 + q̄ne
β̄−ρ̄

2 )2

(1− q̄neβ̄)(1− q̄ne−ρ̄)

×
∞∏
n=1

(1 + q̄ne−
β̄−ρ̄

2 )2

(1− q̄ne−β̄)(1− q̄neρ̄)
.

(6.112)

The reason we transformed the first line above into the second line is for ease in series

expansion. The integral (6.85) has poles when τ2 = b
2πw

so one has to be careful while

expanding in powers of e−β̄. Here, we are in the regime where, b
2π(w+1)

< τ2 <
b

2πw
.
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So, in the second line above, we can expand all terms of the form 1
1−x as

∑∞
0 xn.

Now, notice that for each term, (6.111) holds. The first product which goes from

1 . . . w has m̄2 < 0, m̄1 > 0, ¯̀< 0 but |m̄1 − m̄2| ≥ |¯̀|
w+1

. The second product which

goes from w + 1 . . .∞, has m̄2 > 0, m̄1 < 0, ¯̀ > 0 but m̄2 − m̄1 ≤
¯̀

w+1
. The third

product has m̄1 < 0, m̄2 < 0, ¯̀> 0, so it also satisfies (6.111). The other important

term in (6.85) is θ2(i β̄+ρ̄
4π
, q̄)2. Every term in the expansion of this theta function has

δ = 0. Hence, the only terms that can satisfy (6.108) are the zero modes of this theta

function that also have ¯̀ = 0. It is apparent that (6.111) holds for the eta functions

in (6.85). To conclude, we need to consider only the zero-modes in θ2(i β̄+ρ̄
4π

) and we

can neglect everything else in the limit β̄ = −ρ̄+ µ̄→∞.

A very similar argument works for the contribution from the continuous repre-

sentations. The contribution of the continuous representations comes from the diver-

gences in the integral (6.85) near τ2 = b
2πw

. To analyze these, we replace τ by its value

at the pole everywhere except in the divergent term and then again expand out the

partition function. By the argument above, again, we only need to concern ourselves

with zero modes. In the limit β̄ = −ρ̄→∞, the contribution from this pole vanishes

unless:

j + kn̄+
1

2
=
kw

4
+

1

w
(
s2

k
+

(j + kn̄+ 1
2
)2

k
) (6.113)

is met. This can only happen if:

s = 0,

j + kn̄+
1

2
=
kw

2
.

(6.114)

However, this condition can never be met because the sum over j runs from 0 . . . k
2
−1.

Thus it is precisely the chiral primaries that would have been in the continuum that
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are missing from our list above

1
4

BPS partition function

1
4

BPS states are of the form |anything〉|chiral primary〉. The first step is to extract

the anti-holomorphic chiral primary from the integral, as detailed above. Then, we

merely need to series expand the holomorphic term and pick out the term that satisfied

the level matching condition (6.106). They key property we need here is

θ2(u−v
2

+ wτ)2θ2(u+v
2

)2

−iθ1(u+ wτ)η(τ)6
χQ5−2
j (v − wτ)

=


z
Q5w

2 q−
Q5w

2

4
θ2(u−v

2
)2θ2(u+v

2
)2

−iθ1(u)η(τ)6 χQ5−2
j (v) w even;

−z
Q5w

2 q−
Q5w

2

4
θ2(u−v

2
)2θ2(u+v

2
)2

−iθ1(u)η(τ)6 χQ5−2
Q5
2
−j−1

(v) w odd,

(6.115)

where as usual z = e2πiv, q = e2πiτ . We can use this to shift the arguments of the θ

function to a regime where (2.38) is applicable. Then (6.87) follows.

Elliptic Genus

To obtain the elliptic genus, we should take ρ̄ = −β̄ + 2πi. As we mentioned, the

partition function (6.85) vanishes with this substitution due to the zero mode contri-

butions from the θ functions in the numerator. Evaluating the modified Index (6.92)

is equivalent to replacing this term with a constant, which in our normalization is −1
2
.

Apart from this we see that with these chemical potentials, dramatic cancellations
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occur in formula (6.85). We find

E2(β, ρ) ∼ −bQ
1
2
5

2π

∫
dτ2

τ
3
2

2

∫ 1
2

−1
2

dτ1e
−Q5b

2

4πτ2

(
1

θ1( iβ
2π
, τ)

)

×
4θ2(iβ+ρ

4π
)2θ2(iβ−ρ

4π
)2

η(τ)6
×

Q5
2
−1∑

j=0

(∑
n∈Z q

(j+ 1
2

+Q5n)2/Q5(zj+
1
2

+Q5n − z−(j+ 1
2

+Q5n))

θ1( iρ
2π
, τ)

× (−1

2
) · (1 + e

−β̄+ρ̄
2 )2

∑
m∈Z q̄

(j+ 1
2

+Q5m)2/Q5(z̄j+
1
2

+Q5m − z̄−(j+ 1
2

+Q5m))

(1− e−β̄)(1− eρ̄)

)
.

(6.116)

In the last line, we will interpret the zero modes of the theta functions that appear as

the action of the global generators of the spacetime supergroup SU(1, 1|2). The term

(1− e−β̄) which corresponds to an operator with h̄ = 1, r̄ = 0 represents the action of

L̄b−1. The term (1 − eρ̄) represents an operator with h̄ = 0, r̄ = −1 and corresponds

to the action of K̄− the lowering operator of the SU(2) R-symmetry. K̄− acts on the

term in the numerator (z̄j+
1
2

+km − z̄−(j+ 1
2

+km)) to generate a SU(2) representation.

The two other terms in the numerator (1 + e
−β̄+ρ̄

2 )2 correspond to fermionic operators

with h̄ = 1
2
, r̄ = −1

2
. This term represents the action of the two global supercharges

that do not annihilate the chiral primary at the head of this representation.

If m > 0, this chiral primary is represented by the term z̄j+
1
2

+Q5m in the SU(2)

representation. In this case, the term z̄−(j+ 1
2

+Q5m) represents an anti-chiral primary

(The reverse is true for m < 0). The surviving global supercharges should annihilate

this term. It appears that in the formula (6.85) we need to impose this projection

by hand. This is equivalent to dropping the term z−(j+ 1
2

+km) in (6.116) and leads to

formula (6.93). The same projection needs to be imposed on the holomorphic term

in (6.93) and (6.85). This deserves a better understanding.
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6.B Theta Functions

Here we list our convention for various theta functions. We define:

θ(a, b)(ν, τ) =
∑
p∈Z

eπiτ(p+a
2

)2+2πi(ν+ b
2

)(p+a
2

), (6.117)

with the conventions:

θ1 = θ(1, 1),

θ2 = θ(1, 0),

θ3 = θ(0, 0),

θ4 = θ(0, 1).

(6.118)

Defining, q = e2πiτ and z = e2πiρ the definitions above lead to the following

product formulae [112].

θ1(ρ, τ) = −iz
1
2 q

1
8

∞∏
n=1

(1− qn)
∞∏
n=0

(1− zqn+1)(1− z−1qn),

θ2(ρ, τ) = z
1
2 q

1
8

∞∏
n=1

(1− qn)
∞∏
n=0

(1 + zqn+1)(1 + z−1qn),

θ3(ρ, τ) =
∞∏
n=1

(1− qn)
∏

r∈N+1/2

(1 + zqr)(1 + z−1qr),

θ4(ρ, τ) =
∞∏
n=1

(1− qn)
∏

r∈N+1/2

(1− zqr)(1− z−1qr).

(6.119)

We sometimes use the abbreviated notation θ(ρ) for θ(ρ, τ). The η function is defined

by:

η(τ) = q
1
24

∞∏
n=1

(1− qn). (6.120)



Chapter 7

Future Directions

We have come to the end of our long journey through supersymmetric partition

functions in AdS/CFT. In several examples, we were able to match results on both

sides of the AdS/CFT correspondence. However, the work in this thesis also provides

some pointers for future work.

The first unsolved problem that, historically, motivated several of the studies in

this thesis is to count the entropy of supersymmetric black holes in AdS5. We conjec-

tured that this entropy could be obtained from the classical cohomology of a particular

supercharge. Enumerating the states in this cohomology is a well defined, simple to

state and tantalizing combinatoric problem. However, it has not yet been solved.

Perhaps some additional physical insight, over and above combinatoric prowess, is

required for this.

These black holes have another striking property. They have only four charges

although, naively, one would expect them to have five. The regularity of the gravity

solution provides us with one relation between these charges. What is the origin of

268



Chapter 7: Future Directions 269

this relation in the gauge theory? This is another question on which little progress

has been made despite much effort.

One might ambitiously hope that numerical work would answer some of these

questions. Indeed, the recent remarkable success in simulating supersymmetric quan-

tum mechanics [70] leads us to hope that, in the not so distant future, N = 4 Yang

Mills may be amenable to simulation. This would allow far more stringent tests of

the AdS/CFT correspondence than have hitherto been considered.

In the AdS3/CFT2 example, we are left with a puzzle regarding the elliptic genus.

As we discussed, the elliptic genus seems to jump as we move off a special submanifold

of parameter space. To understand, in detail, how this happens we need to learn how

to couple string theory to RR fluxes.

Finally, in the past few years, some progress has been made in quantizing strings in

curved spacetime by listing and quantizing classical supersymmetric solutions. This

has led us to some puzzles. For example, in AdS5, two distinct families of classical

solutions – corresponding to giant gravitons and dual giant gravitons – are believed to

describe the same set of quantum states. Similar questions arise in the calculations

of Chapters 5 and 6. It would be interesting to have a better understanding of

these issues; this would also tell us the limits of the validity of these semi-classical

techniques.

We hope that many of these questions will be answered in the near future!



Appendix A

Moving Away from

Supersymmetry

A.1 Introduction

Almost thirty years ago t’Hooft, Polyakov, Migdal and Wilson suggested that

large N Yang Mills theory could be recast as a string theory. Electric flux tubes of

the confining gauge theory were expected to map to dual fundamental strings. The

string coupling constant would map to 1
N

. It was hoped that this picture would then

allow us to reach N = 3 by means of a 1
N

expansion.

When the gauge-string duality was finally understood in detail, many aspects of

this picture were borne out. However, it was found that supersymmetry was necessary

for us to have control over the dual string theory. In this thesis, we have analyzed

supersymmetric partition functions in the gauge-gravity correspondence.

A gravity dual to pure large N Yang Mills theory probably exists; the problem is

270
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that to understand this dual, we need to understand how to quantize string theory

in the presence of non-trivial RR fluxes. However, there are some statements we can

make simply from the dual gauge theory.

In this appendix, we will calculate the spectrum of particles in the gravity dual

to pure, large N yang mills theory

by decomposing the partition function of the free SU(N) gauge theory on a sphere

into a sum over characters of the conformal group (the conformal group is a good

symmetry of pure Yang Mills theory precisely at free coupling). According to the

AdS/CFT dictionary, representations of the conformal group are in one to one corre-

spondence with particles of the dual string theory; consequently our decomposition

determines particle spectrum of interest.

A.2 Conformal Algebra

Adding dilatations and special conformal transformations to a set of Lorentz gen-

erators in 4 dimensions gives the conformal algebra.

[D,Pµ] = −iPµ,

[D,Kµ] = iKµ,

[Kµ, Pν ] = 2i(ηµνD +Mµν),

[Mµν , Pρ] = i(ηµρPν − ηνρPµ),

[Mµν , Kρ] = i(ηµρKν − ηνρKµ),

[Mµν ,Mρσ] = i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνσMµρ) .

(A.1)
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We are interested in unitary representations of this algebra, where these generators

are hermitian. However, it is convenient for the purposes of constructing the repre-

sentations of this algebra, to choose a basis of generators which satisfies the euclidean

conformal algebra [7] and in which the generators are no longer all hermitian. The

generators (some D′, P ′µ, etc.) in this new basis will satisfy the same algebra as

above with ηµν → δµν . The hermiticity properties of the generators in this basis are:

M ′† = M ′,

D′† = −D′,

P ′† = K ′,

K ′† = P ′.

From now on, we will use this new set of generators and drop the primes for clarity.

We can extract two sets of SU(2) generators from the Lorentz generators Mµν .

We define:

Jz1 = 1/2(M12 +M03),

Jz2 = 1/2(M12 −M03),

J+
1 = 1/2(M23 +M01 + i(M02 −M13)),

J+
2 = 1/2(M23 −M01 − i(M13 +M02)),

J−1 = J+†
1 , (A.40)J−2 = J+†

2 .

(A.2)

We will also choose to use an hermitian operator D′′ = iD for convenience. We note

that the set of generators M = {D′′, Jz1 , J+
1 , J

−
1 , J

z
2 , J

+
2 , J

−
2 } generate the maximal

compact subgroup SO(2) × SO(4) ⊂ SO(4, 2) of the conformal group. We can di-

vide the generators into three sets : G0 = {D, Jz1 , Jz2}, G+ = {J+
1 , J

+
2 , Pµ}, G− =
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{Kµ, J
−
1 , J

−
2 }. With this division, the Lie algebra above has the property that:

[g0, g+] = g
′

+,

[g0, g
′

0] = g
′′

0 ,

[g+, g−] = g0,

[g0, g−] = g
′

−.

where anything with a subscript 0 belongs to linear combinations of operators in G0

and similarly symbols with subscripts +(−) belong to linear combinations of operators

in G+(G−). These relations make it clear that G+ and G− act like raising and lowering

operators on the charges G0. The operators in G0 commute and we will use these as

Cartan generators for the algebra.

It will be convenient to choose linear combinations of the operators in G+ and G−

that diagonalize G0. These combinations are:

Pw = P1 + iP2,

P
linew

= P1 − iP2,

Pz = P3 + iP4,

Pz̄ = P3 − iP4.

(A.3)
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These generators all have well defined weights under the Cartan generators G0.

D J1 J2

J+
1 0 1 0

J+
2 0 0 1

Pw 1 1
2

1
2

Pw̄ 1 −1
2
−1

2

Pz 1 −1
2

1
2

Pz̄ 1 1
2
−1

2

(A.4)

A.3 Representations of the Conformal Group

Any irreducible representation of the conformal group can be written as some

direct sum of representations of the compact subgroup SO(4)× SO(2):

RSO(4,2) =
∑
i

⊕
Ri
comp. (A.5)

We are ultimately interested in the occurrence of these representations in the par-

tition function of the conformal Yang-Mills gauge theory quantized on S3 × R; the

hamiltonian of the theory is the dilatation operator D. The spectrum of this theory is

bounded below and therefore we will be interested in representations of the conformal

algebra where the values of the charge D are bounded below. Then there must be

some term, Rλ
comp in the above sum that has the lowest dimension. This term has a

highest weight state |λ > with weights λ = (d, j1, j2). The Kµ operators necessarily

annihilate all the states in Rλ
comp because the Kµ have negative weight under the

operator D. If we consider the operation of the P µ on this set of states, we generate
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a whole representation of the conformal algebra with states:

[λ]∗ = Rλ
SO(4,2) =

∑
nwnw̄nznz̄

P nw
w P nw̄

w̄ P nz
z P nz̄

z̄ ×Rλ
comp. (A.6)

We will denote this set of states by [d, j1, j2]∗. A careful analysis [5] shows that, barring

the trivial case, this representation is unitary if one of the following conditions holds

on the highest weight state |λ >:

(i)(A.40)d ≥ j1 + j2 + 2(A.40)j1 6= 0 j2 6= 0,

(ii)(A.40)d ≥ j1 + j2 + 1(A.40)j1j2 = 0.

(A.7)

In the case where equality does not hold in these unitarity conditions, the repre-

sentation is called long and all the states produced by the operation of the P µ are

non-zero.

If equality holds in one of the conditions, then the representation will be a trun-

cated short representation in which some of the states listed in (A.6) are 0. A unitary

representation is one where we can define a positive definite norm. To find the states

that should be absent in a short representation, one can assume that the states in

Rλ
comp are normalized in the standard way [7] . Calculating the norm of the states

P µ|λ > will show that when equality holds in the unitarity conditions above, some

of these states, say aµP
µ|λ > have norm 0. This should be interpreted as meaning

that this state is 0 so that the operator aµP
µ annihilates |λ >. The descendants of

aµP
µ|λ > then also do not occur in the representation. This last statement needs

some care as we will see.

We will list here the possible types of short representations:

• In the generic short representation, j1 6= 0, j2 6= 0, d = j1 + j2 + 2 the states of

norm 0 occur at level 1. The state |d + 1, j1 − 1
2
, j2 − 1

2
> is not found in the
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representation and its descendants are also not to be found in the representation.

The set of all descendants of the state λ′ = |d + 1, j1 − 1
2
, j2 − 1

2
> is the same

as [d + 1, j1 − 1
2
, j2 − 1

2
]∗, so that we may write the generic short, irreducible

representation as:

[d, j1, j2] = [d, j1, j2]∗ − [d+ 1, j1 −
1

2
, j2 −

1

2
]∗. (A.8)

• In the case j1 = j2 = 0, d = 1, the state |3, 0, 0 > is not found. All its

descendants are also absent, so we may write the irreducible representation as

[1, 0, 0] = [1, 0, 0]∗ − [3, 0, 0]∗. (A.9)

• In the case j1 > 0, j2 = 0, the state |d + 1, j1 − 1
2
, 1

2
> is absent. Note that the

weights of this state satisfy the unitarity bound (i) in (2.6). When we delete

the states [d+ 1, j1 − 1
2
, 1

2
]∗, we must delete it as a short representation, ie. we

must not delete the states that do not occur in the short rep [d + 1, j1 − 1
2
, 1

2
].

We will do a calculation below, using an oscillator representation, showing that

this is the correct way to remove the zero norm states in this case. We will have

[d, j1, 0] = [d, j1, 0]∗ − [d+ 1, j1 −
1

2
,
1

2
]∗ + [d+ 2, j1 − 1, 0]∗. (A.10)

A.4 Characters

The characters for these representations are now easy to compute. First we com-

pute a character of the set of states [d, j1, j2]∗. We will denote the character of this
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set of states by a bar on χ:

χ̄[d,j1,j2] = Tr[d,j1,j2]∗ exp[iDθ + iJz1 θ1 + iJz2 θ2]

=
∑

nk ≥ 0

|m1| < j1

|m2| < j2

〈adjoint|eiDθ+iJz1 θ1+iJz2 θ2P n1
w P n2

w̄ P n3
z P n4

z̄ |d,m1,m2 >

=
χ
SU(2)
j1

χ
SU(2)
j2

eidθ∏4
j=1(1− exp[i ~αj · ~θ])

(A.11)

where ~θ = (θ, θ1, θ2), and αj runs over the 4 generators Pw, Pw̄, Pz, Pz̄ and refers

to their weights taken from the table (A.4) , ie α1 = (1, 1/2, 1/2).

The characters of the possible representations are given by:

1. Long, d > j1 + j2 + 2: χ[d,j1,j2] = χ̄[d,j1,j2]

(ii)

2. Short, j1 = j2 = 0, d = 1: χ[1,0,0] = χ̄[1,0,0] − χ̄[3,0,0]

3. Short, j1 > 0, j2 = 0, d = j1 +1 : χ[d,j1,0] = χ̄[d,j1,0]−χ̄[d+1,j1−1/2,1/2] +χ̄[d+2,j1−1,0]

4. Short, j1 > 0, j2 > 0, d = j1 + j2 + 2 : χ[d,j1,j2] = χ̄[d,j1,j2] − χ̄[d+1,j1−1/2,j2−1/2]

We will note shortly that these characters are not orthogonal. Nevertheless, they

can be used to decompose the spectrum of the Conformal Yang Mills theory we are

interested in.
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A.5 Oscillator Construction

Here we will discuss an oscillator construction [145] for the SO(4,2) algebra and

use it to confirm the character of the short representations j2 = 0 and d = j1 + 1.

The SO(4,2) algebra may be represented by 8 bosonic oscillators aI , bJ , aI and bJ

(I, J = 1, 2) having the following commutation relations:

[aI , a
J ] = δJI (A.40)[bP , b

Q] = δQP . (A.12)

The generators of the SO(4, 2) group are represented as:

J i1 = 1/2(σi)JI [aIaJ − 1/2δIJa
KaK ], J i2 = 1/2(σ̄i)QP [bP bQ − 1/2δPQb

RbR]

D = 1/2(Na +Nb + 2), (A.40)P IJ = aIbJ , (A.40)KIJ = aIbJ .

(A.13)

We note that a state constructed out of oscillators acting on a vacuum satisfying

aI |0 >= bJ |0 >= 0 has weights (1/2(Na + Nb + 2), 1/2(na1 − na2), 1/2(nb1 − nb2))

under D, Jz1 , J
z
2 (na1 is the number of a1 operators used to create the state and Na =

na1 + na2). The unitarity constraints are built into this representation, so we may

calculate with it without worrying about states that have norm zero. For example,

we may compute the “blind” partition function of the short representation |λ >=

(j1 + 1, j1, 0). We first choose a state with the right weights to act as the primary:

(a2)2j1|0 > . (A.14)

Now we can easily generate from this state, a representation of the maximal compact

subgroup SO(4)× SO(2):

aI1aI2aI3 . . . aI2j1 |0 > . (A.15)
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There are 2j1 + 1 states here, all with dimension D = j1 + 1 as we expect. Now we

operate with all possible P µ:

Z[j1+1,j1,0] =
∑

n1,n2,m1,m2

∑
Ik

< adjoint|xDan1
1 a

n2
2 b

m1
1 bm2

2 aI1aI2aI3 . . . aI2j1 |0 >

=
∞∑
N=0

xN+j1N(N + 2j1)

=
xj+1(2j1 + 1− 4j1x+ (2j1 − 1)x2)

(1− x)4
.

(A.16)

This agrees with the result in the list of characters above. In the second line, we

have used the fact that n1 + n2 = m1 + m2 and that the number of as in (A.15) is

2j1. This calculation can easily be repeated with chemical potentials added for the

angular momenta.

A.6 Character Decomposition

Character decomposition integrals are evaluated over the Haar measure of the

group in question, in this case SO(4, 2). We can reduce these integrals to integrals

over the maximal torus of the maximal compact subgroup SU(2) × SU(2) × SO(2)

using the Weyl integration formula∫
G

f(g)dµG =
1

|W |

∫
T

f(t)
∏
α∈R

(1− exp(α(t)))dµT . (A.17)

where f(g) is a function satisfying f(hgh−1) = f(g) so that it only depends on the

conjugacy class of g, and dµG and dµT are the Haar measures on the group G and

the maximal torus T . α ∈ R means the product is over the roots of SO(4, 2). Each

root corresponds to a generator in table (A.4) , for example the factor corresponding

to Kw is (1− exp(−i(θ+ θ1+θ2
2

))). The constant |W | is the order of the Weyl group in
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the compact case. In this non-compact case, it will diverge. We nevertheless obtain

a useful orthogonality relation below where this constant is not relevant. An integral

of characters over the group G becomes:

∫
G

χ∗[d,j1,j2]χ[d′,j′1,j
′
2]dµG =

1

|W |

∫ 2π

0

∫ 4π

0

∫ 4π

0

χ∗[d,j1,j2](θ, θ1, θ2)χ[d′,j′1,j
′
2](θ, θ1, θ2)∏

α∈R

(1− exp(i~α · ~θ))dθ
2π

dθ1

4π

dθ2

4π
.

(A.18)

While the characters of the non-compact group SO(4, 2) are not orthogonal, the

characters of the sets of states [d, j1, j2]∗ can easily be shown to explicitly satisfy the

following orthogonality relation:

1

4

∫
χ̄∗[d,j1,j2]χ̄[d′,j′1,j

′
2]

∏
α∈R

(1− exp(i~α · ~θ))dµT = δd,d′δj1,j′1δj2,j′2 . (A.19)

This orthogonality is enough for us to decompose the partition function of YM into

representations of the conformal group.

In the case of non-compact groups, character decomposition integrals involve some

subtleties. Written naively, these integrals have poles. To learn how to deal with these

poles, consider the representation [1, 0, 0]× [1, 0, 0]. The decomposition of this tensor

product by characters will involve integrals like∫
(χ̄[1,0,0])

2χ̄∗[d,j1,j2]dµG =∫
(cos j1θ1 − cos(j1 + 1)θ1)(cos j2θ2 − cos(j2 + 1)θ2) exp[−idθ] exp[2iθ]∏

α∈P (1− ei~α·~θ)
dθ

2π

dθ1

4π

dθ2

4π
,

(A.20)

where α ∈ P means product only over the 4 roots corresponding to momentum

generators Pi as in (A.11) . It is clear that this integral has singularities along
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the contour of integration. To resolve this, we deform the contour inwards.This is

equivalent to ignoring the contribution from the boundaries.

To see why this is justified, expand

∏ 1

1− xqi
=
∑

xnqni . (A.21)

We have introduced new notation here. x = eiθ, qi = ei
±θ1±θ2

2 for i = 1, 2, 3, 4. Now

recalling that x measures the scaling dimension or the energy, we see that that we

should add a small imaginary part to θ which is equivalent to inserting an energy

cutoff in the integral.

With this pole prescription, the decomposition yields:

χ[1,0,0]∗[1,0,0] =
∞∑
d=2

χ[d, d−2
2
, d−2

2
]. (A.22)

These representations are generically short (barring [2, 0, 0]).

We can count the operators in our theory manually to check this result. Using

two scalar field representations, the primary operators in the tensor product at the

first few levels are:

φ1φ2 [2, 0, 0],

φ2∂µφ1 [3,
1

2
,
1

2
],

∂µφ1∂νφ2 [4, 1, 1].

(A.23)

which agrees with the decomposition. We will use this same pole prescription in

performing the decomposition of the YM theory.
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A.7 The Integral

The single trace partition function of Free Yang Mills on a sphere was calculated

in [4, 3]. The result was written as

Z[θ, θ1, θ2] = −
∑ φ(k)

k
ln(1− z(kθ, kθ1, kθ2)), (A.24)

where the ’single particle’ partition function, z is given by:

z = 1 +
(x− x3)

∑
i qi + x4 − 1∏

i(1− xqi)
. (A.25)

We need to decompose this expression as a sum of characters of the conformal group.

First,

1− z =
(1− x2)(x2 − (

∑
qi)x+ 1)∏

i(1− xqi)
. (A.26)

So, the logarithm in (A.24) will separate the factors here into terms which we will

integrate one at a time. Also, we have explicitly

χ̄d,j1,j2 =
sin[(j1 + 1/2)θ1]

sin[ θ1
2

]

sin[(j2 + 1/2)θ2]

sin[ θ2
2

]
exp[idθ]

∏
i

1

(1− xqi)
. (A.27)

The measure of integration is:

dM = 4 sin2[
θ1

2
] sin2[

θ2

2
]
∏
i

(x− 1/qi)(x− qi)
d θ

2π

d θ1

4π

d θ2

4π
. (A.28)

Note that the θ1, θ2 integrals go over 0, 4π.

We will evaluate ∫
dMZ[θ, θ1, θ2]χ̄∗[d,j1,j2]. (A.29)

Half of the measure cancels with the denominator of the character. The remaining
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part of the measure may be written as

4 sin
θ1

2
sin

θ2

2

∏
i

(x− qi)

= 4 sin
θ1

2
sin

θ2

2
{(x4 + 1)− 4 cos

θ1

2
cos

θ2

2
(x3 + x) + 2x2(cos θ1 + cos θ2 + 1)}.

(A.30)

We will do the integral over the 4 linear factors in the denominator of (A.26) first.

The contribution from the partition function Z is

−
∑
k,i

φ(k)

k
log

1

1− xkqki
= −

∑
k,i,n

φ(k)
xknqkni
kn

= −
∑
k,n

φ(k)
4 cos knθ1

2
cos knθ2

2
xkn

kn
.

(A.31)

The integration over θ picks out coefficients of xd in the product of (A.31) and the

measure (A.30) . The coefficient of xd in (A.31) is

c(d) = −
∑
k|d

φ(k)

d
4 cos

dθ1

2
cos

dθ2

2
= −4 cos

dθ1

2
cos

dθ2

2
. (A.32)

Hence, we need to deal with the integral∫ [
c(d) + c(d− 4)− 4 cos

θ1

2
cos

θ2

2
(c(d− 1) + c(d− 3))

+ 2 (cos θ1 + cos θ2 + 1) c(d− 2)
]

(cos j1θ1 − cos {(j1 + 1)θ1})

× (cos j2θ2 − cos {(j2 + 1)θ2})
d θ1

4π

d θ2

4π

(A.33)

With ∆a
b = δab + δ−ab the contribution from the factors in the denominator of (A.26)

is given by

I1[d, j1, j2]

= −∆j1
j2

(
∆d

2j1
+ ∆d−4

2j1
+ 2∆d−2

2j1

)
+ ∆d−1±1

2j1
∆d−1±1

2j2
+ ∆d−3±1

2j1
∆d−3±1

2j2

−∆d−2±2
2j1

∆d−2±2
2j2

.

(A.34)
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Next, we consider the (1− x2) factor in (A.26) .

− log(1− x2k) =
∑ x2kn

n
. (A.35)

This time, for the coefficient of xd, we have

∑
2k|d

2φ(k)

d
=

 1 d even

0 otherwise

(A.36)

Substituting this into the main integral, we find that for d > 4, we need to integrate

∫
4 + 2(cos θ1 + cos θ2 + 1)dM d even,∫

−4 cos θ1
2

cos θ2
2
dM d odd.

(A.37)

For d < 4 the expression above and below should be modified to drop terms that

cannot contribute to the pole in x.

Define

I0[j1, j2] = 4∆0
j1

∆0
j2

+ ∆j1−1
0 ∆j2

0 + ∆j2−1
0 ∆j1

0 . (A.38)

With I = I1 + I0, the contribution from the second term is

I2[d, j1, j2] = I[d, j1, j2]− I[d, j1, j2 + 1]− I[d, j1 + 1, j2] + I[d, j1 + 1, j2 + 1]. (A.39)

Finally we consider the remaining quadratic term in (A.26) . We will call
∑

i q
k
i =

4 cos kθ1
2

cos kθ2
2

= αk, to save space.

− log(1− (αkx
k − x2k)) =

∑
n

(αkx
k − x2k)n

n

=
∑
p,q

(−1)qαpkx
(p+2q)k 1

p+ q

p+ q

q

 .

(A.40)
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Again we will want to collect the coefficient of xd here. A term in the sum above

contributes to this coefficient only if p + 2q = d/k. Also, this expression is summed

over k against φ(k)/k. This means we need to consider the sum

∑
k|d

d/k∑
p=0

φ(k)

k
αpk(−1)( d

k
−p)/2 2

d
k

+ p

 d
2k

+ p/2

p

 . (A.41)

We now look at a generic integral, integrating this term against cos Aθ1
2

cos Bθ2
2

. All

terms occurring in the actual integral of the term in (A.40) may be reduced to this

form. Use the identity

∫
4p
[
cos

kθ1

2

]p
cos

Aθ1

2

[
cos

kθ2

2

]p
cos

Bθ2

2
=

 p

1
2
(p− A

k
)


 p

1
2
(p− B

k
)

 . (A.42)

To shorten expressions, define p
2

= s, d
2k

= x, A
2k

= y, B
2k

= z.

This allows us to write the generic integral over the sum in (A.41) as

S1[d,A,B]

=
∑

k|(d,A,B)

φ(k)
x∑

s=max(y,z)

(−1)x−s

s+ x

2s


 2s

s− y


 2s

s− z

 1

k(x+ s)
.

(A.43)

Now define

S2[d,A,B] = S1[d,A,B] + S1[d− 4, A,B]

−
∑

σ1,σ2=±1/2

(
S1[d− 1, A+ σ1, B + σ2] + S1[d− 3, A+ σ1, B + σ2]

)

+
∑

ρ1,ρ2=±1

S1[d− 2, A+ ρ1, B] + S1[d− 2, A,B + ρ2]

+ 2S1[d− 2, A,B].

(A.44)
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Table A.1: Low Dimension Operators in the Pure YM Theory

Dimension Operators Conformal Representation
Content

1 no operators no representations
2 Fµν [2,1,0]+[2,0,1]
3 no primary operators no representations
4 Fµν ∗ F µν , |F |2 [4,0,0]+[4,0,0]

F{µνF
ν
σ} − |F |2 [4,1,1]

F{µνFρσ} − F{µνF ν
σ} − |F |2 [4,2,0]+[4,0,2]

We can now collect all the terms that appear in the integral over the quadratic term

(A.40)

I3[d, j1, j2] = S2[d, j1, j2]+S2[d, j1+1, j2+1]−S2[d, j1+1, j2]−S2[d, j1, j2+1]. (A.45)

Collecting the terms contributing, one finds the following enlightening result:∫
dMZ[θ, θ1, θ2]χ̄∗[d,j1,j2] = I2[d, j1, j2] + I3[d, j1, j2]. (A.46)

where I2 is defined in (A.39) and I3 in (A.20) . As we noted above, for d < 4 the

expressions get modified.

These sums are prohibitively difficult to evaluate by hand, but may be easily done

with a computer.

It is easy to list the operators in the theory at low scaling dimension and we do

this in Table A.1.

Now consider large values of d. Neglecting the angular variables, we see that, for

large values of d

Z = −
∑ φ(k)

k
ln

(1 + x)(x2 − 4x+ 1)

(1− x)3
≈ βdxd. (A.47)

where β = 2 +
√

3 is the larger root of the quadratic term. This is the characteristic
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Table A.2: Representation Content of Pure YM

Dimension Representations
2 [2,0,1] + [2,1,0]
3 nothing
4 2[4,0,0] + [4,0,2] + [4,2,0] + [4,1,1]
5 [5,3/2,3/2]
6 2[6,0,0] + 2[6,0,1] + [6,0,3] + 2 [6,1,0] + 2[6,1,1]

+ [6,1,2] + [6,1,3] + [6,2,1] + [6,2,2] + [6,3,0] + [6,3,1]
7 4[7,1/2,3/2] + 2[7,1/2,5/2] + 4[7,3/2,1/2] + 4[7,3/2,3/2]

+ 2[7,3/2,5/2] + 2[7,5/2,1/2] + 2 [7,5/2,3/2] + [7,5/2,5/2]
8 6[8,0,0] + 4[8,0,1] + 5[8,0,2] + [8,0,3] + 2 [8,0,4]

+ 4 [8,1,0]+ 10 [8,1,1] + 7[8,1,2] + 5[8,1,3] + [8,1,4]
+ 5[8,2,0] + 7 [8,2,1]+ 8 [8,2,2] + 3[8,2,3] + [8,2,4]
+ [8,3,0]+ 5[8,3,1] + 3[8,3,2] + [8,3,3]+ 2[8,4,0]
+ [8,4,1] + [8,4,2]

9 14[9,1/2,1/2] + 20[9,1/2,3/2]+ 15[9,1/2,5/2] + 6[9,1/2,7/2]
+ 20[9,3/2,1/2] + 28[9,3/2,3/2] + 18[9,3/2,5/2] + 7[9,3/2,7/2]
+ 2 [9,3/2,9/2] + 15[9,5/2,1/2] + 18 [9,5/2,3/2] + 12[9,5/2,5/2]
+ 4 [9,5/2,7/2] + 6[9,7/2,1/2] + 7 [9,7/2,3/2] + 4 [9,7/2,5/2]
+ [9,7/2,7/2]+ 2[9,9/2,3/2]

Hagedorn growth in the number of states. It is easy to verify, numerically, that (A.46)

does reproduce the right growth in the density of states.

As a final consistency check, it is necessary for (A.46) to sum to an integer for every

value of d, j1, j2; this is not at all apparent from the expression we have. Nevertheless,

using some elementary number-theoretic results, we show, in the appendix, that our

answer always sums to an integer.

We list here the representation content of the theory up to dimension 9.
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Figure A.1: Grouping the Terms
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A.8 Proof of Integral Multiplicities

We now proof that the multiplicities we obtain using the formula above are all

integral. Consider (A.43), which has a sum over k and s. Schematically, the set of

allowed k, s, x values is shown below. In the figure, for each value of k, s can range

over the values demarcated by the horizontal line at the bottom and the outermost

line.

The critical point is to partition this large set of values correctly. We group the

set of k, s values in subsets of the kind Sx0,s0 = {s, k, x, y, z : x+ s = p(x0 + s0)} This

foliation is indicated on the diagram.

It is clear that in each partition, we have pk = g, where g is a constant. Second,

we have gcd(s0 + x0, x0 − s0, s0 − y0, s0 − z0, s0) = 1. Since (A.43) can be written as:

α1

g(x0 + s0)
=

α2

2gs0

=
α3

g(x0 − s0)
=

α4

g(s0 − y0)
...
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where the αi are integral, it suffices to show that the sum is divisible by g to show

that it is an integer.

This leaves us to prove the following statement:

∑
k|g

φ(g/k)(−1)k(x0−s0)

(s0 + x0)k

2ks0


 2ks0

(s0 − y0)k


 2ks0

k(s0 − z0)

 mod g = 0.

(A.48)

For notational simplicity, we consider the simpler statement,

∑
k|g

(−1)n3k

n1k

n2k

φ(g/k) mod g = 0, (A.49)

where ni are arbitrary integers with gcdni = 1. Furthermore, we take g = pt, where

p is prime. We take p 6= 2 so that (−1)n3k has the same sign. The generalization of

this proof to generic g is straightforward.

With t = 1, our sum is:n1

n2

 (t− 1) +

n1t

n2t

 = 0( mod t). (A.50)

where we have used

n1t

n2t

 =

n1t

n2t

 mod t. Assume the statement is true for

t = n. For t = n+ 1, our sum is:

n+1∑
i=0

n1p
i

n2p
i

φ(pn+1−i) = p
n∑
i=0

n1p
i

n2p
i

+

n1p
n+1

n2p
n+1

−
n1p

n

n2p
n

 . (A.51)

The first term is divisible by pn+1 by hypothesis. With n3 = n1−n2, write the second

term as:n1p
n

n2p
n

(n1p
n+1(n1p

n+1 − 1)...(n1p
n + 1)− n2p

n+1...(n2p
n + 1)n3p

n+1...(n3p
n + 1)

n2pn+1...n2pnn3pn+1..n3pn

)
.
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We can cancel leading terms divisible by pn+1 in the numerator and denominator, but

then we notice that subleading terms not divisible by pn+1 cancel in the numerator

but not in the denominator. So the second term is also divisible by pn+1. This proves

our result.

A.9 N = 4 SYM

In principle, it is not difficult to generalize the procedure above to the case of

the N = 4 Yang Mills Theory. This theory has an exact superconformal symmetry.

Representations of the Superconformal group are labeled by the highest weight under

SO(4)× SO(2) and the R charges. These were originally classified in [9]. They were

studied in [10, 11] and are discussed in detail in [12] .

It is easy to generalize the partition function by adding in chemical potentials for

the R charges. This result can be read off from the appendix in [12]. Similarly, it is

simple to generalize the result for the Haar measure and the characters[13].

Unfortunately, short representations in the superconformal case have a rather more

intricate structure than in the conformal case and it is not always possible to write

them as a difference of two long representations. This complication is not important

in the spectrum of single trace operators in the N = 4 theory, because it is known

that the only relevant short representations are the 1
2
, 1

2
BPS multiplets.

The more serious complication is numerical. Performing the character decompo-

sition involves finding the coefficient of a specified monomial in a given power series

expansion. Since we have six chemical potentials in the supersymmetric case, the

simple algorithms are O(d6). Thus, the calculation quickly becomes unfeasible.
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In a set of papers [26, 27, 28, 146, 147], Bianchi et. al. conjectured that the

spectrum of the free SYM theory may be obtained from the spectrum of type IIB

theory on flat space through a specified algorithm. They verified their conjecture

using a sieve procedure which allowed them to determine the spectrum up to scaling

dimension 10.

Further verification of this conjecture must await either a deeper understanding

of their result or the development of more efficient numerical techniques.

A.10 Summary

Unitary representations of the Conformal Algebra must obey d ≥ j1 + j2 + 2, for

j1j2 6= 0 and d ≥ j1 + j2 + 1 otherwise. Depending on whether either of these bounds

is saturated, the characters of the conformal group fall into three classes. These are

described in Section A.4

The Free Yang Mills theory on a sphere has an exact conformal symmetry. Hence,

its partition function may be written as a sum over the characters above. Formally,

we have the result

Z =
∑

Nd,j1,j2χd,j1,j2 . (A.52)

In this note, we performed this decomposition. We find that Nd,j1,j2 is described by

(A.46). Our formula demonstrates the correct asymptotics. Moreover, it is possible

to prove that it always produces an integer.
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